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We study fluctuations of interfaces in the Kardar-Parisi-Zhang (KPZ) universality class with curved
initial conditions. By simulations of a cluster growth model and experiments with liquid-crystal turbulence,
we determine the universal scaling functions that describe the height distribution and the spatial correlation
of the interfaces growing outward from a ring. The scaling functions, controlled by a single dimensionless
time parameter, show crossover from the statistical properties of the flat interfaces to those of the circular
interfaces. Moreover, employing the KPZ variational formula to describe the case of the ring initial
condition, we find that the formula, which we numerically evaluate, reproduces the numerical and
experimental results precisely without adjustable parameters. This demonstrates that precise numerical
evaluation of the variational formula is possible at all, and underlines the practical importance of the
formula, which is able to predict the one-point distribution of KPZ interfaces for general initial conditions.
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Efforts on universal behavior associated with scale invari-
ance, which have established important concepts such as the
renormalization group and the universality class, now shed
light on novel aspects of nonequilibrium fluctuations. In this
respect, the Kardar-Parisi-Zhang (KPZ) universality class
[1–4] plays a distinguished role, because of the existence of
exact solutions and experimental realizations. TheKPZclass
is also known to arise in a variety of problems: besides
growing interfaces and directed polymers as originally
proposed [1], it also turned out to be relevant for stochastic
particle transport, quantum integrable systems [3,4], and
fluctuating hydrodynamics [5], to name but a few.
In the following, let us focus on the one-dimensional

case, for which exact studies have been developed, and
consider growing interfaces described by the height hðx; tÞ
at position x ∈ R and time t ∈ R. The KPZ class describes
scale-invariant fluctuations of growing interfaces in the
long-time limit, in general situations without particular
symmetries and conservation laws. The hallmarks of the
KPZ class are the scaling laws for the fluctuation amplitude
∼ tβ and the correlation length ∼ t1=z, with universal
exponents β and z that take the values β ¼ 1=3 and z ¼
3=2 for the one-dimensional case [1,2,4]. The height hðx; tÞ
is then generally written, for large t, as

hðx; tÞ ≃ v∞tþ ðΓtÞ1=3χðX; tÞ; ð1Þ
where χðX; tÞ is a stochastic variable, X ≔ x=ξðtÞ denotes
the coordinate rescaled by the correlation length
ξðtÞ ≔ ð2=AÞðΓtÞ2=3, and v∞, Γ, and A are system-
dependent parameters. The variable χðX; tÞ is expected

to be universal, in the sense that its statistical properties do
not depend on microscopic details of the systems. The
scaling exponents of the KPZ class have been found in
various experimental systems [6], including colonies of
living cells [7,8], combusting paper [9], and liquid-crystal
turbulence [4,10–12].
Recently, remarkable developments triggered by exact

studies [3,4] have unveiled novel aspects of the KPZ class.
A particularly important outcome is the geometry depend-
ence, which we describe below. If an interface grows on top
of a flat substrate, as usually assumed in simulations, the
interface roughens but maintains the globally flat profile. In
contrast, if an interface in a plane starts to grow from a point
nucleus, say, at x ¼ 0, it takes a circular shape with a
growing radius. Although this interface becomes flatter and
flatter as the radius increases, statistical properties of
χðX; tÞ remain distinct from the flat case. Specifically,
χðX; tÞ has different asymptotic behavior as follows:

χðX; tÞ⟶d
�
A1ðXÞ; ðflatÞ
A2ðXÞ − X2; ðcircularÞ ð2Þ

where!d denotes convergence in distribution (¼d and ≃d will
be used analogously). A1ðXÞ and A2ðXÞ are called the
Airy1 [13,14] and Airy2 [15] processes, respectively, and
are well studied analytically [16]. Due to their translational
invariance, as long as one-point properties are concerned,
AiðXÞ can be replaced by a single stochastic variable χi.
Remarkably, the one-point distributions of χ1 and χ2 were
shown [17–20] to coincide, respectively, with the GOE and

PHYSICAL REVIEW LETTERS 124, 060601 (2020)

0031-9007=20=124(6)=060601(6) 060601-1 © 2020 American Physical Society

https://orcid.org/0000-0002-8860-7178
https://orcid.org/0000-0002-7217-6860
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.060601&domain=pdf&date_stamp=2020-02-10
https://doi.org/10.1103/PhysRevLett.124.060601
https://doi.org/10.1103/PhysRevLett.124.060601
https://doi.org/10.1103/PhysRevLett.124.060601
https://doi.org/10.1103/PhysRevLett.124.060601


GUE Tracy-Widom distributions [21] known from random
matrix theory [22], which describe the distribution of the
largest eigenvalue of random matrices in the Gaussian
orthogonal and unitary ensembles (GOE and GUE),
respectively. This geometry dependence, as well as the
emergence of the Tracy-Widom distribution, turned out to
be experimentally relevant too, as shown by experiments on
liquid-crystal turbulence [4,10,11]. Correlation properties
were also shown to be different between the flat and
circular cases, even though the scaling exponents β and
z take the same values. On the basis of those results, one
may state that the flat and circular interfaces constitute
different universality subclasses within the single KPZ
class, characterized by different yet universal distribution
and correlation properties.
Those universality subclasses have been, however,

mostly studied for a few “canonical” cases including the
flat and circular ones. A natural and important question is
then what happens for more general initial conditions.
Theoretically, the KPZ fixed-point variational formula
[16,23–26] can be used to predict the asymptotic properties
of χðX; t → ∞Þ for general initial conditions. On the other
hand, experimental and numerical studies have focused on
finite-time behavior emerging from intermediate initial
conditions. For example, the present authors [12] studied
growth from a ring of finite radius R0, which then produces
two curved interfaces, one growing outward and the other
one inward. Focusing on the ingrowing interfaces, we found
that finite-time properties of χðX; tÞ for different R0 are
controlled solely by the rescaled time τ ≔ v∞t=R0, as
follows: statistical properties of χðX; tÞ agree with those
for the flat subclass initially (τ ≪ 1), until the interfaces
nearly collapse at τ ≈ 1 and therefore do not behave as KPZ
anymore. Analogous behavior was also observed numeri-
cally by Carrasco andOliveira [27], who used lattice models
with system size set to decrease in time (mimicking the
shrinking circumference of the ingrowing interfaces).
The case of enlarging substrates, which would correspond
to the outgrowing case, has also been studied, and crossover
from the flat to circular subclasseswas suggested in this case
[27–29], which is also expected to be described by τ.
However, it remains unclear how universal such finite-time
behavior is, why τ is the right parameter to describe it, and
above all, how such crossover can be described theoretically.
Those problems are addressed and answered in this

Letter. We study outgrowing interfaces from ring initial
conditions both numerically and experimentally, using an
off-lattice version of the Eden model [30] and the liquid-
crystal turbulence [4,10–12]. Scaling functions for the
flat-to-circular crossover are determined and shown to be
the same for both of the studied systems. Moreover, we
describe this crossover theoretically, by adapting the
variational formula [16,23–26] for curved initial condi-
tions. The formula is numerically evaluated and shown to
reproduce our numerical and experimental results

quantitatively, without adjustable parameters. This also
implies that the flat-to-circular crossover is indeed universal
and, furthermore, should generally appear for any curved
interfaces with locally parabolic initial conditions.
We first study the off-lattice Eden model [30], in which a

cluster of round particles (with unit diameter) grows by
stochastic addition of new particles. The initial condition is
set to be a ring ofN particles [Fig. 1(a)]. The evolution rule is
as follows (see Ref. [30] for details): At each time step, we
randomly choose a particle at the interface, attempt to put a
new particle next to it in a random direction, and do so if
there is no overlapping particle. Time is then increased by
1=ðthe number of the interfacial particlesÞwhether the new
particle was added or not. Particles that cannot contribute
further growth are checked and removed from the list of the
interfacial particles with every time unit. To characterize the
height fluctuations, we measure the local radius increment
Rðθ; tÞ, which is the radial distance between the initial ring
and the interface at each angular position θ [Fig. 1(a)].
Thanks to the rotational symmetry, we have

Rðθ; tÞ ¼d hð0; tÞ ≃ v∞tþ ðΓtÞ1=3χð0; tÞ; ð3Þ
but statistical precision can be improved by averaging over θ.
In our simulations, we varied the initial size N from 100 to
40 000 and obtained 4320 to 14 400 realizations for each
case (summarized in Table SI in the Supplemental Material
[31]). For comparison, we also simulated flat interfaces, for
which the initial condition was a line formed by 75 000
particles and the periodic boundary condition in the span-
wise direction was used, and we obtained 14 400
realizations.
To characterize statistical properties of the stochastic

variable χðX; tÞ, we first estimated the nonuniversal param-
eters, v∞, Γ, and A, from the data for the flat interfaces. v∞
and Γ were obtained by the standard procedure [4]—
specifically, by using ∂thhi ≃ v∞ þ const × t−2=3 and
hh2ic=ðt2=3hχ12icÞ ≃ Γ2=3, where h� � �kic denotes the kth-
order cumulant, and here we used the fact that the
asymptotic fluctuations of the flat interfaces are given by
the GOE Tracy-Widom distribution. We obtained v∞ ¼
0.51370ð5Þ and Γ ¼ 0.980ð3Þ. The parameter A was

(a) (b)

FIG. 1. Typical snapshots from the Eden simulations and the
liquid-crystal experiments. (a) An Eden interface growing out-
ward from a ring with N ¼ 1000 (dotted line). Time is indicated
by the color. (b) A DSM2 cluster (black) growing from a ring
with R0 ¼ 366 μm (dotted lines). The elapsed time after shooting
the laser is indicated above each image. The scale bar corresponds
to 1 mm.
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obtained by A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γ=v∞

p
, the relationship valid for

isotropic growth [11].
With those parameter values, we define the rescaled

height

qðθ; tÞ ≔ Rðθ; tÞ − v∞t

ðΓtÞ1=3 ≃d χð0; tÞ ð4Þ

and measure its mean and variance as functions of time, for
different initial particle numbers N (left panel of Fig. 2).
Figure 2 also shows the rescaled mean velocity [4,12]

hpðθ; tÞi ≔
�
3t2=3

Γ1=3 ½∂tRðθ; tÞ − v∞�
�

≃ hχð0; tÞi þ 3t∂thχð0; tÞi; ð5Þ

which asymptotically goes to hχð0; tÞi if hχð0; tÞi con-
verges sufficiently fast. For the flat case (gray circles),
hqi → hχ1i, hpi → hχ1i, and hq2ic → hχ12ic as expected.
In the case of the ring initial conditions, for large N, the
data first behave similarly to the flat case, then deviate and
approach the values for the circular subclass, hχ2i and hχ22ic
[37]. This crossover takes place earlier for smaller N.
Indeed, when the data are plotted against the rescaled time
τ ¼ v∞t=R0 (R0 ¼ N=2π), all data collapse onto a single
curve except for the nonuniversal short-time regime (right
panel of Fig. 2). This suggests that the distribution of χð0; tÞ
for different R0’s, denoted by χð0; t;R0Þ, is described by a
single stochastic variable χcð0; τÞ, parametrized by τ, as
follows:

χð0; t;R0Þ⟶d
χcð0; τÞ; ðR0; t → ∞Þ; ð6Þ

where the double limit is taken with fixed τ ¼ v∞t=R0.
Then the flat-to-circular crossover we found indicates

χcð0; τÞ!d χ1 for τ → 0 and χcð0; τÞ!d χ2 for τ → ∞.
The skewness Sk½Rðθ; tÞ� ≔ hR3ic=hR2i3=2c → Sk½χcð0; τÞ�
and the kurtosis Ku½Rðθ; tÞ� ≔ hR4ic=hR2i2c → Ku½χcð0; τÞ�
show consistent behavior (see Fig. S1 in the Supplemental
Material [31]).
We also study this crossover in the spatial correlation.

In the case of the point initial condition, suppose
θ ¼ 0 corresponds to x ¼ 0. Then, using Rðθ; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx; tÞ2 þ x2

p
≃ hþ x2=2h and Eq. (2), we can show

qðθ; tÞ!d A2ðXÞ. Therefore, the rescaled spatial covariance,
CsðΔX; tÞ ≔ hqðθ þ Δθ; tÞqðθ; tÞi − hqðθ; tÞi2 with ΔX ≔
hRðθ; tÞiΔθ=ξðtÞ, can be directly compared with the covari-
ance of theAiry1 andAiry2 processes. Our numerical results
for the ring initial conditions (filled symbols in Fig. S2 of the
Supplemental Material [31]) indeed show crossover from
the Airy1 covariance (τ ≪ 1) to the Airy2 covariance
(τ ≫ 1), consistent with the results on the one-point
distribution.

To test the universality of our finding, and in particular,
the function forms of hχcð0; τÞi and hχcð0; τÞ2ic, we
conducted experiments on liquid-crystal turbulence
[4,10–12]. As in the previous studies, we applied an ac
voltage (here, 22 V at 300 Hz) to a nematic liquid crystal
filling a thin gap between transparent electrodes, and we
observed the growth of a turbulent state called dynamic
scattering mode 2 (DSM2), expanding in a metastable
turbulent state, DSM1 (see the Supplemental Material [31]
for detailed methods). DSM2 was generated by emitting a
few ultraviolet laser pulses [4]. Using the holographic
technique we previously adopted for the DSM2 growth
experiments [12], we formed the laser intensity profile in
the shape of a ring of a given radius R0, which sets the
initial condition of the DSM2 interface [Fig. 1(b)]. We also
generated circular interfaces with a point initial condition,
and flat interfaces with a linear initial condition. We
obtained 941 to 1936 realizations for each case (see
Table SII in the Supplemental Material [31]), recorded
by a charge-coupled device camera. The radius Rðθ; tÞ of
the DSM2 interfaces [or the height hðx; tÞ for the flat case]
was determined from each image, with the time t defined as
the elapsed time after shooting the laser pulses. Then the
nonuniversal parameters v∞, Γ, and A were evaluated in the
same way as for the Eden model, here for the flat and point
initial conditions (Table SII [31]). Although the values of

FIG. 2. The mean and variance of the rescaled height, hqðθ; tÞi
and hqðθ; tÞ2ic, and the rescaled mean velocity, hpðθ; tÞi, for the
Eden model in the outgrowing case. The data are shown against
the raw time t (left) and the rescaled time τ ¼ v∞t=R0 (right). The
theoretical curves evaluated numerically from the variational
formula for the outgrowing interfaces (¼ var. formula, blue solid
line) are shown in the right panels. The values of χ1 and χ2 are
shown by the dashed and dotted lines, respectively. The inset of
the top-right figure shows the difference between the data and the
excepted long-time limit value, hχ2i. The black solid line
indicates slope −1=3.
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v∞, Γ, and A are expected to be independent of the initial
condition, in practice one needs to evaluate for each set of
experiments, because of unavoidable slight changes in
experimental conditions [11]. For the ring initial condi-
tions, however, the parameter values could not be obtained
in the same way because of the time dependence (i.e.,
crossover) of χðX; tÞ. We therefore used the values obtained
from the flat case for the outgrowing cases, unless other-
wise stipulated. Possible shifts in the parameter values were
taken into account in the uncertainty estimates for the
outgrowing cases, evaluated from the differences in the
parameter values between the flat and circular cases.
Now, we compare the experimental results with those for

the Eden model. The left panel of Fig. 3 shows the variance
of the rescaled height, hqðθ; tÞ2ic, against τ ¼ v∞t=R0,
which overlaps on the Eden data within statistical errors
and parameter uncertainty (error bars and shades, respec-
tively) apart from the nonuniversal short-time behavior. For
the rescaled mean velocity hpðθ; tÞi (right panel), the
uncertainty of v∞ was too large to make a meaningful
comparison (inset). However, if we instead choose the
value of v∞ in such a way that hpðθ; tÞi at the largest t falls
onto the curve for the Eden model (obtained values of v∞
are given in Table SII [31]), hpðθ; tÞi overlaps for all t
(main panel). Those results of hqðθ; tÞ2ic and hpðθ; tÞi
suggest universality of the one-point distribution of
χcð0; τÞ. Moreover, the spatial covariance CsðΔX; tÞ is also
found to overlap with the results of the Eden model if the
value of τ is close enough (Fig. S2 [31]). This suggests that
not only the one-point distribution of χcð0; τÞ, but also the
spatial covariance of χcðX; τÞ, is universal.
So far, we have characterized the flat-to-circular cross-

over and found it to be controlled by a single parameter

τ ¼ v∞t=R0. But why so, and how can this crossover be
theoretically described? To answer these questions, we
employ the variational formula [16,23–26] and apply it to a
general, curved initial condition.
The variational formula describes the height hðx; tÞ for a

general initial condition hðx; 0Þ≕ h0ðxÞ as follows:

hðx; tÞ≃d sup
y∈R

½hcircðx; t; yÞ þ h0ðyÞ�; ð7Þ

where hcircðx; t; yÞ denotes the height for the point initial
condition nucleating at position y, growing with the same
realization of noise for different y [23]. Intuitively, this
means that the initial condition hðx; 0Þ can be regarded as a
collection of point sources, and hðx; tÞ is then given by the
envelope of the circular interfaces from those point sources,
a bit analogously to Huygens’ principle [38]. The for-
mula (7) involves a mathematical object called the Airy
sheet [23,25], but if the interest is only in the one-point
distribution, it can be simply expressed by the Airy2
process, as follows [16,24]:

χðX; tÞ ≃d sup
Y∈R

�
A2ðX − YÞ − ðX − YÞ2 þ h0ðξðtÞYÞ

ðΓtÞ1=3
�
: ð8Þ

We use Eq. (8) and consider a class of curved initial
conditions in the following form:

h0ðxÞ ¼ R0g

�
x
R0

	
; ð9Þ

where gðwÞ is a locally parabolic function, i.e., gðwÞ ¼
−c2w2 þ Oðw2Þ for small jwj. Substituting Eq. (9) into
Eq. (8), taking the limit R0, t → ∞ with fixed τ ¼ v∞t=R0,
and setting x ¼ 0 yields

χð0; tÞ⟶d
sup
Y∈R

½A2ðYÞ − ð1þ cτÞY2�≕ χ̃ðcτÞ; ð10Þ

with c ≔ ð4c2ΓÞ=ðA2v∞Þ. This shows that the asymptotic
height distribution is parametrized only by cτ, and only the
local functional form of gðwÞ at small jwj is relevant.
The characteristic time is τ ¼ 1=c in the rescaled unit,
and therefore t ¼ A2R0=4c2Γ in the raw time scale, and
this is the time at which the initial height difference
jh0ð0Þ − h0ðξðtÞÞj becomes comparable to the fluctuation
amplitude, ðΓtÞ1=3. For isotropic growth, the relationship
A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Γ=v∞
p

[11] further yields c ¼ 2c2.

For the ring initial conditions, gðwÞ is given by gðwÞ ¼
σð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
1jwj<1 − 1Þ with σ ¼ þ1 (−1) for the outgrow-

ing (ingrowing) case. Then we obtain χð0; tÞ≃d χ̃ðστÞ,
which we have expressed by χcð0; τÞ for the outgrowing
case σ ¼ þ1 [Eq. (6)]. Note that, mathematically, it is

known that χ̃ð0Þ ¼ supY∈RðA2ðYÞ − Y2Þ¼d χ1; i.e., the
GOE Tracy-Widom distribution [39,40]. In the other limit

FIG. 3. Comparison of the results from the experiments (color-
filled symbols), the Eden simulations (gray open symbols), and
the variational formula (¼ var. formula, blue solid line), for the
outgrowing interfaces. The variance of the rescaled height,
hqðθ; tÞ2ic, and the rescaled mean velocity hpðθ; tÞi are shown
in the left and right panels, respectively, against τ ¼ v∞t=R0. For
the numerical results, data with t > 103 are shown by the same
symbols as those in Fig. 2. For the experimental results, statistical
errors are indicated by the error bars on the first and last data
points, and uncertainty associated with the parameter estimation
is shown by the shaded areas. The values for χ1 (flat) and χ2
(circular) are shown by the dashed and dotted lines, respectively.
The inset of the right panel shows the experimental results
obtained with v∞ from the flat case, while it was adjusted in the
main panel to fit the Eden data at the largest t (see text).
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τ → ∞, clearly, χ̃ðτÞ → A2ð0Þ¼d χ2; i.e., the GUE Tracy-
Widom distribution. Therefore, χcð0; τÞ ¼ χ̃ðτÞ indeed has
the expected limits on both sides of the flat-to-circular
crossover.
To compare the variational formula with the experimen-

tal and numerical data for finite τ, we employ a
Monte Carlo method to evaluate Eq. (10). The Airy2
process A2ðYÞ is in fact known to be equivalent to the
largest eigenvalue of large GUE random matrices under-
going Dyson’s Brownian motion [16,39]. We therefore
implement Dyson’s Brownian motion numerically, in the
form of the Ornstein-Uhlenbeck process of Hermitian
random matrices and obtain approximated realizations of
A2ðYÞ (see the Supplemental Material [31] for details).
Then, we evaluate the supremum of Eq. (10), interpolating
the values ofA2ðYÞ between the discrete steps by using the
Brownian bridge [31]. The results for the outgrowing case
(σ ¼ þ1) are shown in Figs. 2 and 3, where the data of the
mean hqi, the variance hq2ic, and the rescaled mean
velocity hpi are compared with the corresponding expres-
sions of χ̃ðτÞ—specifically, hχ̃ðτÞi, hχ̃ðτÞ2ic [Eq. (4)], and
hχ̃ðτÞi þ 3τ∂τhχ̃ðτÞi [Eq. (5)], respectively. The results of
the variational formula precisely agree, without any adjust-
able parameter, with the numerical and experimental data.
We also inspected the ingrowing case σ ¼ −1 and con-
firmed the validity of the variational formula (see Fig. S3 of
the Supplemental Material [31]). The agreement was also
underpinned for the skewness and kurtosis (Fig. S4 of the
Supplemental Material [31]).
In summary, we found KPZ crossover functions that

govern height fluctuations of interfaces growing outward
from ring initial conditions, parametrized only by the
rescaled time τ ¼ v∞t=R0, and evidenced their universality
both experimentally and numerically. We then presented a
theoretical description of this crossover, on the basis of the
KPZ variational formula for general curved initial con-
ditions. We numerically evaluated the formula and found
remarkable agreement with the experimental and numerical
data. Our results constitute the first example where the KPZ
variational formula was successfully used to describe
experimental observations, showing the ability of this
formula to explain, or even predict, real data from general
initial conditions. We hope our work will trigger further
studies to elucidate geometry-dependent universality of the
KPZ class and beyond.
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SUPPLEMENTAL TEXT 1: EXPERIMENTAL METHODS

Similarly to the past studies [1–5], we prepared an electroconvection cell by assembling two glass plates with
transparent electrodes, sandwiching 12 µm-thickness spacers. A liquid-crystal sample, N -(4-Methoxybenzylidene)-
4-butylaniline doped with 0.01wt.% of tetra-n-butylammonium bromide, was filled in a 1.5 cm × 1.5 cm region
enclosed by the spacers. The homeotropic alignment was achieved by spin-coating N,N -dimethyl-N -octadecyl-3-
aminopropyltrimethoxysilyl chloride on the electrodes. The cell was contained in a temperature controller, whose
temperature was maintained at 25 ◦C, with the temporal fluctuation in the order of ±0.01 ◦C. Under this tempera-
ture, the electroconvection was observed by applying an AC voltage to the cell. The cutoff frequency, which separates
the conductive and dielectric regimes of the electroconvection [6], was roughly 1.7× 103 Hz. At the frequency we used
in the main experiments, 300 Hz, compact DSM2 clusters grew at the amplitude & 17.5 V. The voltage amplitude for
the main experiments, 22 V, was chosen to be sufficiently higher than that threshold.

To generate a growing DSM2 interface, we first applied an AC voltage of amplitude 22 V and frequency 300 Hz
to the cell and the system was set entirely in the metastable DSM1 state. After 5 s, we emitted three ultraviolet
laser pulses to the cell (New Wave Research MiniLaseII, wavelength 355 nm, pulse width 4-6 ns, repetition frequency
20 Hz, energy / 0.4 mJ after attenuation) to nucleate DSM2 [4]. The laser pulse was reflected by a spatial light
modulator (Hamamatsu Photonics, LCOS-SLM X10468-05) and a hologram of the given shape was made, by using
the experimental setup reported in Ref. [5]. For the linear initial condition, the line length was approximately 8 mm.
Then the growing DSM2 interface was recorded by a charge-coupled device camera for a given time (for the flat
interfaces, the region of width ≈ 4 mm near the center of the line was observed). Then we turned off the applied
voltage, waited for 30 s, and started the next run.

To obtain the radius R(θ, t) of the DSM2 interfaces (or the height h(x, t) for the flat case), we binarized each image
by thresholding. For the ring initial conditions, first we determined the center of the ring by using the ensemble
average of the image intensity fields taken at t = 1 s, and used it to define the radius R(θ, t).

SUPPLEMENTAL TEXT 2: EVALUATION OF THE VARIATIONAL FORMULA

Detailed description of the numerical method

We evaluated the variational formula (10) by using Dyson’s Brownian motion to approximate the Airy2 process, as
follows:

1. We first prepared an initial Hermitian random matrix drawn from the Gaussian unitary ensemble (GUE), or
equivalently, the stationary distribution of Eq. (S2) (below):

Hjk(0) =


√

1
2N

(1)
jk (j = k)

1
2

[
N (1)

jk + iN (2)
jk

]
(j > k)

, (S1)

where N (m)
jk are i.i.d. random variables drawn from the normal distribution with the mean 0 and the variance 1.

2. We simulated the following Ornstein-Uhlenbeck process:

dHjk(u)

du
=

−Hjk + η
(1)
jk (u) (j = k)

−Hjk +
√

1
2

[
η

(1)
jk (u) + iη

(2)
jk (u)

]
(j > k)

(S2)
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with Gaussian noise η
(m)
jk (u) satisfying

〈
η

(m)
jk (u)

〉
= 0 and

〈
η

(m′)
j′k′ (u′)η

(m)
jk (u)

〉
= δj′jδk′kδm′mδ(u

′ − u). We

employed Gillespie’s exact algorithm for the Ornstein-Uhlenbeck process [7] for each element, with time step
∆u.

3. We computed the largest eigenvalue λ
(N)
j := λ(N)(j∆u) for each time step j∆u (j = 0, . . . , jmax). Then, since

√
2N1/6

[
λ(N)(N−1/3Y )−

√
2N
]

d→ A2(Y ) (N →∞), (S3)

we rescaled it as follows:

λ̃
(N)
j :=

√
2N1/6

(
λ

(N)
j −

√
2N
)
. ∆ũ := N1/3∆u. (S4)

4. Using the fact that the Airy2 process is locally equivalent to the Brownian motion with unit diffusion constant
(the standard Brownian motion) [8, 9], we approximated the variational formula (10) by

χ̃ (cτ) = sup
Y ∈R

[
A2 (Y )− (1 + cτ)Y 2

]
≈ max

k=−L,...,L−1
r

(j)
k =: χ̃N (cτ), (S5)

where L was taken sufficiently large (see below), j = L, . . . , jmax−L, and r
(j)
k is the maximum of the Brownian

bridge (with unit diffusion constant) connecting z
(j)
k := λ̃

(N)
j+k − (1 + cτ) (k∆ũ)

2
and z

(j)
k+1. Specifically, r

(j)
k is a

random variable whose cumulative distribution function is given by [10]

P
[
r

(j)
k < z

]
=

1− exp

[
− (z−z(j)

k )(z−z(j)
k+1)

∆ũ

]
(z ≥ max

{
z

(j)
k , z

(j)
k+1

}
)

0 (otherwise).
(S6)

The range of L was chosen so that it satisfies
(

max λ̃
(N)
j −min λ̃

(N)
j

)
< (1 + cτ)[(L/1.1)∆ũ]2. Then the

cumulants
〈
χ̃N (cτ)

k
〉

c
were evaluated by taking the average of the right-hand side of Eq. (S5) over varying

j and independent realizations of the Ornstein-Uhlenbeck process. In our simulations for the main results
presented in Figs. 3, S3, and S4, we used 5360 realizations of the Ornstein-Uhlenbeck process with N = 512,
∆ũ = 10−3 (see below), and jmax = 500000.

Step size

To find an appropriate step size ∆u, we estimated the range of Y that is relevant to the value of the supremum
in Eq. (S5). Since the Airy2 process is locally equivalent to the standard Brownian motion, a value of Y such that
(1 + cτ)Y 2 becomes as large as A2 (Y ), denoted by Y0, is given approximately by (1 + cτ)Y 2

0 =
√

2Y0. With this
Y0, ∆ũ should be chosen so that ∆ũ � Y0. For large τ , Y0 ≈ τ−2/3. In the present work, we chose ∆ũ = 10−3

(∆u = 10−3N−1/3) so that ∆ũ� Y0 is satisfied for all τ ≤ 3× 103.

Matrix size N

To quantify the effect of finite matrix size N , we first evaluated the cumulants of the rescaled largest eigenvalue,〈
(λ̃

(N)
j )

k
〉

c

, with varying N , and compared with the known values for the GUE Tracy-Widom distribution,
〈
χ2

k
〉

c
.

The results in Fig. S5(a) show that

〈
(λ̃

(N)
j )

k
〉

c

indeed approach
〈
χ2

k
〉

c
, with the difference decreasing as ∼ N−2/3,

being consistent with theoretical expectation [11]. Since χ̃N (∞) = λ̃
(N)
j , the finite-N corrections shown in Fig. S5(a)

are equivalent to those of χ̃(τ) in the limit τ →∞. Similarly, we evaluated the variational formula (S5) with cτ = 0,

for which it is known that χ̃(0) = supY ∈R(A2 (Y ) − Y 2)
d
= χ1, i.e., GOE Tracy-Widom distribution [12, 13]. As

displayed in Fig. S5(b), the data obtained from the variational formula indeed show the cumulant values approaching
those of χ1, again with the finite-size corrections proportional to N−2/3. From those results, we decided to use
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N = 512 (largest size) for the main part of the work; at N = 512, the amplitude of the finite-N corrections shown
in Fig. S5 is small enough to compare with our numerical and experimental data. The uncertainty of the estimated
cumulants displayed in Figs. 3, S3, and S4 is the summation of the statistical uncertainty and the expected amplitude

of finite-N correction, the latter being evaluated by the larger value of
∣∣∣〈χ̃N (∞)

k
〉

c
−
〈
χk

2

〉∣∣∣ and
∣∣∣〈χ̃N (0)

k
〉

c
−
〈
χk

1

〉∣∣∣
[Fig. S5(a) and (b), respectively].
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SUPPLEMENTAL TABLES

TABLE SI. Parameters for the Eden simulations.

type outgrowing
N 50 100 500 1000 4000 10000
# of samples 14400 14400 14400 14400 11520 4320
type outgrowing ingrowing
N 20000 40000 10000 20000 40000 100000
# of samples 4320 4320 4320 4320 4320 1440
type flat
length 75000
# of samples 14400

TABLE SII. Experimental conditions and non-universal pa-
rameters.

initial condition # of samples v∞(µm/s) Γ(µm3/s)
line 1417 30.84(2) 1.25(2)× 103

point 941 29.68(3) 1.31(4)× 103

R0 = 366 µm 1936 30.84(2)* –

R0 = 219 µm 1521 30.60(2)* –
* Values obtained by fitting the last data point of 〈p〉

to the results of the Eden model (see main text).

SUPPLEMENTAL FIGURES
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FIG. S1. The skewness and kurtosis of the rescaled height
q(θ, t) for the Eden model. The data are plotted against the
raw time t (left column) and the rescaled time τ = v∞t/R0

(right column). The values for χ1 and χ2 are shown by the
dashed and dotted lines, respectively.

FIG. S2. Spatial covariance Cs(∆X, t), plotted against the
normalized length ∆X, for the outgrowing interfaces. The
solid and dashed lines indicate the Airy1 (flat) and Airy2

(circular) covariance, respectively, 〈Ai(X + ∆X)Ai(X)〉 −
〈Ai(X)〉2.

FIG. S3. The ingrowing counterpart of Fig. 3.
Results from the liquid-crystal experiments (color
filled symbols; data adopted from Ref. [5]) and
those from Eden simulations [gray open symbols;
N = 100000(3), 40000(�), 20000(4), 10000(D)] are com-
pared with the curves obtained from the variational formula
(=var., red solid line). The shaded area behind the variational
formula curves indicates uncertainty of the Monte-Carlo eval-
uation. See Table SI for the number of realizations for the
simulations. The experimental data for the variance (left) is
omitted because of large finite-time effect [5]. The values for
χ1 (flat) are shown by the dashed lines.
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FIG. S4. The skewness and kurtosis of the rescaled height
q(θ, t), plotted against the rescaled time τ = v∞t/R0 for the
(a) outgrowing and (b) ingrowing interfaces. The numeri-
cal results with t > 103 are shown by gray open symbols,
and the curves obtained by numerical evaluation of the vari-
ational (=var.) formula are drawn with the red solid line.
The symbols for the numerical results are for the samples
with N = 40000(�), 20000(�), 10000(O), 4000(�), 1000(3),
500(�), 100(4), 50(D) for the outgrowing interfaces, and for
N = 100000(�), 40000(3), 20000(�), 10000(4) for the in-
growing interfaces, respectively. The shaded area for the vari-
ational formula indicates uncertainty of the Monte-Carlo eval-
uation. The values for χ1 (flat) and χ2 (circular) are shown
by the dashed and dotted lines, respectively.

FIG. S5. Finite-N corrections in the cumulants of χ̃N (∞) =

λ̃
(N)
j (a) and χ̃N (0) (b). They are compared with the cu-

mulants of χ2 and χ1, respectively. The errorbars indicate
statistical uncertainty. The black solid lines are guides for
the eyes showing the exponent −2/3.
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