Bioinformatics, 39(1), 2023, btac799
https://doi.org/10.1093/bioinformatics/btac799
Advance Access Publication Date: 10 December 2022
Original Paper

OXFORD

Bioimage informatics
LapTrack: linear assignment particle tracking with

tunable metrics

Yohsuke T. Fukai ® "* and Kyogo Kawaguchi ® 3

"Noneguilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe
650-0047, Japan, RIKEN Cluster for Pioneering Research, Kobe 650-0047, Japan and *Universal Biology Institute, The University of
Tokyo, Tokyo 113-0033, Japan

*To whom correspondence should be addressed.
Associate Editor: Hanchuan Peng

Received on September 13, 2022; revised on November 9, 2022; editorial decision on December 3, 2022; accepted on December 8, 2022

Abstract

Motivation: Particle tracking is an important step of analysis in a variety of scientific fields and is particularly indis-
pensable for the construction of cellular lineages from live images. Although various supervised machine learning
methods have been developed for cell tracking, the diversity of the data still necessitates heuristic methods that re-
quire parameter estimations from small amounts of data. For this, solving tracking as a linear assignment problem
(LAP) has been widely applied and demonstrated to be efficient. However, there has been no implementation that
allows custom connection costs, parallel parameter tuning with ground truth annotations, and the functionality to
preserve ground truth connections, limiting the application to datasets with partial annotations.

Results: We developed LapTrack, a LAP-based tracker which allows including arbitrary cost functions and inputs,
parallel parameter tuning and ground-truth track preservation. Analysis of real and artificial datasets demonstrates
the advantage of custom metric functions for tracking score improvement from distance-only cases. The tracker can
be easily combined with other Python-based tools for particle detection, segmentation and visualization.

Availability and implementation: LapTrack is available as a Python package on PyPi, and the notebook examples
are shared at https://github.com/yfukai/laptrack. The data and code for this publication are hosted at https://github.
com/NoneqPhysLivingMatterLab/laptrack-optimisation.

Contact: ysk@yfukai.net

Supplementary information: Supplementary data are available at Bioinformatics online.

associated with the connections, we can employ efficient algorithms
(Jonker and Volgenant, 1987; Kuhn, 1955) to solve the global opti-
mization problem called the linear assignment problem (LAP). The
LAP-based tracking method has proven to be accurate and robust,
especially for data with higher particle density. To deal with particle
splitting (by division or oversegmentation) or merging (by underseg-
mentation), which is common in live cell data, Jagaman ez al. (2008)
further developed a two-stage LAP method, with the second stage
dedicated to the connection of splitting and merging branches. The
cost function in their case was the squared Euclidean distance be-

1 Introduction

Automated tracking of particles in timelapse images is important in
a wide range of fields in science and is especially crucial in creating
large datasets of cell lineages in biological studies. Recently there
has been considerable development in tracking algorithms, where
methods based on probabilistic modeling (Bise et al., 2011; Bove
et al., 2017; Chen, 2021; Chenouard et al., 2009, 2014; Meijering
et al., 2009; Ulicna et al., 2021; Ulman et al., 2017) and supervised
machine learning (Ben-Haim and Riklin-Raviv, 2022; Chen, 2021;
Lou and Hamprecht, 2011; Ulman et al., 2017) are increasingly

being developed. The diverse nature of live imaging tasks, however,
frequently requires tracking without underlining model or large-
scale ground-truth annotations, emphasizing the need for a robust
tracking algorithm with a small number of parameters that can be
tuned by manual annotations.

Defining and optimizing a global cost function to appropriately
penalize wrong connections is a common approach in robust track-
ing methods. If the cost function is a linear sum of the costs

©The Author(s) 2022. Published by Oxford University Press.

tween the positions of the objects, with additional intensity-
associated costs for splitting and merging.

Tools have been developed to provide similar LAP-based algo-
rithms with splitting and merging detection; TrackMate (Ershov
et al., 2022; Tinevez et al., 2017), for example, provides distance-
based LAP tracker with particle detection and segmentation work-
flow and a method to conduct manual correction, all within the
Java-based framework in Image] (Schindelin ez al., 2012; Schneider

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

202 Ae|N L€ uo Jasn "Alun eBexiysy Aq 8¢ | /889/66/0€14/|/6E/2I01E/SOIeLLIOUI0I]/W00" AN OIWLBPEDE//:SAY WOy POPEOJUMOQ

https://orcid.org/0000-0002-8860-7178
https://orcid.org/0000-0001-9395-9875
https://github.com/yfukai/laptrack
https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://academic.oup.com/

Y.T. Fukai and K.Kawaguchi

et al., 2012). Cell-ACDC (Padovani et al., 2022), which was origin-
ally designed for yeast analysis, also implements an overlap-based
LAP tracker with splitting detection, as well as various functions
ranging from image alignment to manual correction that support the
entire analysis workflow in Python. In addition, TracX (Cuny et al.,
2022) employs a multi-round tracking and correction workflow
using a LAP tracker and mistracking detector by matching image
features.

Although other highly accurate methods have been proposed to
work for the tracking problem with cell divisions, no single tracking
algorithm will be perfect for all the diverse experimental situations
(Ulman et al., 2017). To obtain near-perfect segmentation and
tracking for specific data, users must still optimize the segmentation
and tracking steps, automatically or manually. In this regard, the
LAP-based algorithm that robustly works with a small number of
parameters continues to play a key role in generating the initial
tracking data without large-scale manual annotation.

An adaptive improvement to the original LAP-based tracking
with distance can be made by using additional features taken from
the cell images. For example, we can extract the morphology of each
cell, such as its shape and size, from typical live cell images, as well
as the signal levels from multiple fluorescent channels. The consist-
ency of cell shape and fluorescent signals across time frames is useful
when tracking is conducted by human eyes, especially when the
frame rate of the data is not high enough. Therefore, it is desirable
to be able to implement arbitrary inputs and cost functions in the
LAP-based tracking scheme, as well as to tune the parameters using
partial ground-truth annotations.

These requirements motivated us to build a tool that recapitu-
lates the LAP algorithm (Jagaman et al., 2008; Tinevez et al., 2017)
with additional flexibility and modularity; LapTrack is designed as
a simple intermediate in the entire tracking pipeline that takes the
positions and features of particles and returns LAP-optimized tracks.
The three unique features of LapTrack are (i) arbitrary tunable cost
functions for particle connection, (ii) integrability with other Python
tools and (iii) the functionality to preserve ground-truth (annotated)
connections. Within this framework, we can implement user-defined
cost functions for connections that can take an arbitrary number of
inputs. The tracking function is modularized and documented as an
application programming interface (API) so that it can be integrated
into any custom workflow in Python, allowing parallel parameter
optimization as well as visualization of results in easy steps.

In this article, we demonstrate how this pipeline can be used not
only to optimize the tracking in a supervised manner, but how it is
also useful for efficient manual correction of the tracks when com-
bined with visualization tools such as napari (Sofroniew et al.,
2022).

2 Materials and methods

2.1 Datasets

We here describe the data that we used to demonstrate the use cases of
LapTrack: live cell images with ground truth segmentation and track-
ing (mouse paw epidermis dataset, cell migration dataset, Yeast Image
Toolkit dataset and C2C12 dataset) and simulated data (colored par-
ticles) provided in https://github.com/NoneqPhysLivingMatterLab/lap
track-optimisation. We also used high-density vesicles, yeast and 3D
Drosophilla data to show that the tracking pipeline works for a wide
range of applications.

2.1.1 Mouse paw epidermis dataset

The segmentation data and the ground truth tracking result col-
lected and analyzed in Mesa ez al. (2018); Yamamoto et al. (2022)
were used as a reference. The dataset contains 236 to 327 cells in
the observation area and has 15 frames.

2.1.2 Cell migration dataset
Images, segmentation data for a portion of frames and the ground
truth tracking result were downloaded from Zenodo (Pylvindinen

et al., 2022). Segmentation was conducted by Cellpose (Stringer
et al., 2021) and manually corrected in napari (Sofroniew et al.,
2022). The ground-truth tracking result was also manually validated
and corrected. The dataset contains 218 to 434 cells in the
648.95 um x 648.95 pm observation area and has 86 frames.

2.1.3 Yeast image toolkit dataset

The dataset was downloaded from the Yeast Image Toolkit website
http://yeast-image-toolkit.org/ (Versari et al., 2017). The data
included the ground-truth cell positions at each time frame, which
were used for the tracking in the benchmark (Section 3.2).

2.1.4 C2C12 dataset

The dataset (Ker et al., 2018) was downloaded from the public re-
pository (Ker, 2017). We used the first 780 frames of sequence 9
with the ‘BMP2’ condition for the benchmark (Section 3.2), since it
included the annotation for all cells in the field. We manually vali-
dated the dataset and removed duplicated annotations on a single
cell.

2.1.5 Colored particles

We simulated the Brownian motion of 400 particles with colors in a
2D box of size 20 x 20 with periodic boundary conditions. The par-
ticles were split into two species, @ and b, where the interaction be-
tween the particles was set as harmonic repulsion with the spring
constants set as 1 for a and a pairs, 1.2 for a and b pairs, and 1.4 for b
and b pairs. The dynamics was simulated with the simulate.brow-
nian routine in Jax-MD (Schoenholz and Cubuk, 2020) with the
parameters kT=0.1 and dt = 0.001, where the mass and friction coef-
ficient were set to the default values, 1 and 0.1. For each particle,
labeled by i, a random integer 7; between 0 and 7 is assigned. The
feature vector ¢; € R, corresponding to RGB colors, of each particle

at each time step is then assigned as ¢; = (R(n?)7R(ni2),R(n1)>,

i

where 7% is the kth digit of #; in the binary representation and
R(x) = 6,0N(2,0.5) + 6, 1N (6,0.5), where N(u, o) is the normal
random variable with mean u and the standard deviation o. When
used for the tracking benchmark, particles crossing the boundary are
regarded as disconnected and belong to different tracks.

2.1.6 Demonstration

The simulated single-molecule dataset was downloaded from the
Particle Tracking Challenge website http:/bioimageanalysis.org/track/
(Chenouard et al., 2014). We used the high-density vesicles dataset
with the signal-to-noise ratio 7. Blobs were detected by the Laplacian-
of-Gaussian (LoG) detector, skimage.feature.blob log func-
tion in scikit-image (van der Walt et al., 2014), with the parameters
min sigma=1, max_sigma=35, num sigma=>5 and thresh-
01d=0.05. The detected points were tracked by LapTrack with
track_cost_cutoff=100.

For Figure 1c, the Yeast Image Toolkit data in IT-Benchmark2/
TestSet4/RawData were segmented by Cellpose 0.7.2 (Stringer
et al., 2021) with the parameters model type= ‘cyto’,
net_avg=True, and diameter = 30 in the eval function. The cent-
roids of each segmented region were tracked by LapTrack with the
default metric and track cost cutoff=100, splitting
cost_cutoff=2500.

The 3D Drosophilla dataset (Fluo-N3DH-CE) was downloaded
from the Cell Tracking Challenge website http://celltrackingchal
lenge.net/ (Ulman et al., 2017). The data included marked cell posi-
tions in each time frame, which were connected to generate tracks
by LapTrack with track cost cutoff=10000, split-
ting cost cutoff=2500.

2.2 Tracking implementation

The implemented particle tracking algorithm follows the method
proposed in Jagaman et al. (2008), with modifications following
TrackMate (Ershov et al., 2022; Tinevez et al., 2017) and additional
flexibility, as we describe in the following sections.

20z ABIN L€ UO Josn “Alun eBexIysY Aq 8€ 1 /889/66L0BI0/ L /6E/SIOIHE/SONEWLIOJUIONG/LLO0D dNO DILSPEDE//:SARY WO, PAPEOJUMO(T

https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
http://yeast-image-toolkit.org/
http://bioimageanalysis.org/track/
http://celltrackingchallenge.net/
http://celltrackingchallenge.net/

LapTrack: linear assignment particle tracking with tunable metrics 3
Bright spots
(a) ° © o detector ()w e o o o o
l;; Association cost s _gl Annota?ed
iy i = connection
° 9; Gap 9I03|ng cost e 6 0 0 o
m;; Merging cost
I s; Splitting cost *
] ."iij * ; \ \
© a . - Pre-defined metrics 1 My,] X
E (Euclidean etc.) chtfi E
=)) Brightfield =
: * User-defined metrics Cellpose segmentation T T
<my; (e.g. feature-based
association probability) *
(b) \
Detection Tracking by -> Visualization g
Segmentation LapTrack Analysis ': T
e ©
L‘ () Initial Manual Updated
P @ D tracking annotation tracking
o ¢ = m n m
C (N _ . i
Data conversion utilities

Tracking score computation

Fig. 1. (a) The schematic for the tracking algorithm (see main text). (b) Expected workflow for cell segmentation, tracking and analysis using tools in Python. The particle de-
tection or segmentation results can be directly supplied to LapTrack. The tracking result can be directly visualized and analyzed in Python. (c) Examples of tracks generated by
LapTrack. The lines indicate the result tracks. (Top) The dataset from Particle Tracking Challenge, detected by the LoG detector. (Middle) The dataset from the Yeast Image
Toolkit website, detected by Cellpose. (Bottom) The Caenorhabditis elegans developing embryo dataset from the Cell Tracking Challenge website. (d) The schematic for the
tracking algorithm with freezing annotated connections. (Top) Annotated connections (red solid lines). (Middle) Connections from (to) a point that has an annotated connec-

tion from (to) itself are forbidden. (Bottom) The verified connections are added to the tracking tree. The split and merges are treated similarly. (e) Illustration of the manual-
correction-aware tracking with napari (see main text) using the cell migration dataset. (Left) Original tracking result with mistakes (gray solid lines). (Middle) Annotation

points are added in napari (red points) to specify a correct connection (red solid line). (Right) Updated tracking result after annotation. The annotated track as well as tracks

nearby are automatically corrected (gray solid lines) (A color version of this figure appears in the online version of this article)

2.2.1 Frame-to-frame LAP

In the first step, the points in successive frames are connected by
solving LAP, and then generating tracks without splits and merges
(Fig. 1a, left top). Specifically, for every pair of points with proper-
ties (such as Euclidean coordinates) x; and x; at frames ¢ and ¢ +1,
the costs l;j = I(x;,xj) are computed using a user-definable metric
function . The costs d and b are then assigned to the particles not
connected to any of the particles in the next and previous timesteps,
respectively. The optimal assignment is found by minimizing the
cost (Jaqaman et al., 2008):

Lg= > (lj+1)+Dd+Bb, (1)

(ij)eC

where C is the set of all connected index pairs, B and D are the num-
bers of the points which does not have a connection to the previous
and next timesteps, respectively, and Iy =min(l;,d,b) (see
Supplementary Material for algorithm details). In the default setting,
d and b are calculated as 1.05 x ™%, where ¢**% is the 90% per-
centile value of the all finite entries in {/;}; (Jagaman et al., 2008).
The default metric for [is set to the squared Euclidean distance
I(xi, x;) = ||xi —x,-H% (Ershov et al., 2022; Jaqaman et al., 2008;
Tinevez et al., 2017) with which the cost-minimizing association can
be interpreted as the maximum log-likelihood solution for Brownian
particles when we ignore splitting and merging (Crocker and Grier,
1996).

2.2.2 Segment-connecting LAP

In the second step, another LAP is solved to predict splitting, merg-
ing, and gap closing (Fig. 1a, left bottom). Gap closing connects free
segment ends with allowing frame skips. The gap closing cost g, =
8(x4,xp) is calculated by a user-definable metric g for all possible

connections between free ends up to a specified frame difference,
and the splitting and merging costs s,5 = s(x,,x3) and m,p =
m(x,,xg) are calculated for all possible connections between a free
end and a track midpoint by user-definable metrics s and . The
metrics g, s and m default to the squared Euclidean distance. Then,
the optimal assignment is calculated by minimizing the overall cost:

Le= Y (@p+l)+ Y (pt+lp)+ Y (my+l)
(2.B)€G (a.p)eS (2,p)eM 2)

+Dd+ Bb+D'd +B'Y,

where G, S and M are the set of all gap-closing, splitting and merg-
ing index pairs, D and B are the number of the unconnected track
ends and starts, D' and B are the number of the track middle points
that are not connected to other track ends as the split and merge, re-
spectively (costs d’ and b’ are assigned to them, respectively) and
b = min(gyp, Sxp, Myp,d, b, d’,b") (see Supplementary Material for
details). In the default setting, d, b, d’ and b’ are calculated analo-
gously to the frame-to-frame LAP.

2.2.3 Freezing annotated tracks

We implemented an option to specify partial tracks within the data
to be fixed as ground-truth verified connections (Fig. 1d). Fixing the
correct tracks is especially useful when performing manual correc-
tions using visualization tools such as napari. As we demonstrate
(https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisa
tion) (Fig. 1e), track connections can be specified to be fixed by
annotating the cell regions before rerunning the LAP-based tracking.
The resulting track preserves the training data tracks due to the
masking scheme (Fig. 1d).

20z ABIN L€ UO Josn “Alun eBexIysY Aq 8€ 1 /889/66L0BI0/ L /6E/SIOIHE/SONEWLIOJUIONG/LLO0D dNO DILSPEDE//:SARY WO, PAPEOJUMO(T

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation

Y.T. Fukai and K.Kawaguchi

2.2.4 Parameter optimization

In practice, we introduce the cut-off for the costs Ijj, g,p, 5.5 and #1,,
above which those values are regarded as infinity. The values of the
cut-offs can affect the performance as demonstrated in Section 3.1,
but it is difficult to optimize those values due to the non-
differentiability of the LAP algorithm (Xu et al., 2020) and the high
computational cost for repeating the tracking routine. We therefore
used non-gradient optimization methods to optimize the specified
sets of the parameters in parallel using the package Ray Tune
(Moritz et al., 2018) with the Optuna optimizer (Akiba ez al., 2019)
and random search. We selected the parameters that achieved the
highest connection Jaccard index value or true positive rate, depend-
ing on the type of the training data (Section 2.3.1).

2.2.5 Analysis pipeline

LapTrack is written in Python with explicit API documentation and
can be integrated with, for example, particle detectors in scikit-
image and deep learning-based segmentation packages such as
Cellpose (Stringer et al., 2021) (Fig. 1b and ¢). The output data is a
networkx (Hagberg et al., 2008) directed graph, which can be ana-
lyzed using the network analysis functions in the package. We also
implemented utilities to convert data into pandas dataframes (pan-
das development team, 2020; Wes McKinney, 2010) and shorthand
functions to track coordinates organized in a dataframe. In this
paper, we used the ground-truth segmentation for each dataset as
the input and analyzed the result tracks by networkx and pandas.
Python scripts for tracking and analysis are provided at https://
github.com/NoneqPhysLivingMatterLab/laptrack-optimisation.

2.3 Metrics for the tracking results
To measure the performance of tracking, we employed the following
metrics, which can also be calculated within LapTrack.

2.3.1 Overall tracking scores

To measure the overall track consistency, we calculated the target
effectiveness (TE) and track purity (TP) (Bise et al., 2011; Chen,
2021), which penalize the false negative and the false positive detec-
tions, respectively. Let us denote the set of ground truth tracks by
{77}, and predicted tracks by {7 f}f. TE for a single ground truth
track 7- f is calculated by finding the predicted track 7% that overlaps
with T‘f in the largest number of the frames and then dividing the
overlap frame counts by the total frame counts for 7° /g . The TE for
the total dataset is calculated as the mean of TEs for all ground truth
tracks, weighted by the length of the tracks. TP is defined analo-
gously, with 'Z';" and T;-) being swapped in the definition. We also
measured the mitotic branching correctness (Bise et al., 2011; Chen,

2021), defined as the fraction of the number of correctly detected
divisions over the total number of the divisions.

2.3.2 Overlap between predicted and ground truth connections
During the parameter optimization, we used a less computationally
expensive quantity, the Jaccard index and the true positive rate of
the connections to measure how well the predicted connections
overlap with the ground truth. The quantity is defined by |7 N
E8|/|1EP U E#| and |EP N £8|/|E8], respectively, where we denote the
set of predicted and ground-truth connections by £” and &%, respect-
ively, and the size of a set £ by |€|. In the benchmark of the Yeast
Image Toolkit dataset (Section 3.2), we additionally calculated the
F-score of the assignment 2|&” N &%|/(|€P| + |€%|) to compare the
performance with previously reported results.

3 Results

3.1 Distance cut-off points can be optimized to increase

performance
We first investigated the performance against various cost cut-off
points in the simplest cases where the costs for connecting, gap

closing and splitting are the squared Euclidean distance between the
centroids. Specifically, we varied the maximum distance allowed for
frame-to-frame particle association (max_distance) and splitting
and gap-closing association (splitting max_distance), which
defines the cut-off for I;; and s, (g,p), respectively, and investigated
how the overall performance changes. In the mouse epidermis data-
set (Fig. 2a), we performed grid search in the parameters max_dis-
tance and splitting max distance. We found that there
exists a maxima in the TE around some finite length scale, suggest-
ing that optimization is useful in performance improvement even for
the cut-off parameters (Fig. 2b). We also found that the correlation
of the tracking scores between mouse epidermis data from different
regions are high upon changing of the parameters [r=0.96
(r=0.90) for TE (TP) using data with TE > 0.75 (TP > 0.75), re-
spectively (Supplementary Fig. S1)], meaning that the optimized
parameters are transferable within similar data.

3.2 Distance-only LAP tracker can achieve comparable

performance to data-specific methods

We then benchmarked the tracking performance of the simple
distance-only LAP tracker with the Yeast Image Toolkit dataset.
Since the published benchmark results in Versari et al. (2017) do not
include divisions, we tracked ground truth segmentation positions
without splitting, with different cut-off points max_distance and
gap_closing_max_distance (the cut-off point for g,4). We then
calculated the TE, the assignment F-score (tracking F-score), and the
F-score for the assignments between the first and the last frames

) 50 0.95
8 o
3 40 0.94 ©
] &
5130 g
g 093 8
ol 20 2
< S
= 092 §
T‘% 10

0.91

() () () Mitotic branching
Target effectiveness Target effectiveness 1o correctness

1.0 A 1.04

0.8 1 0.8 081

0.6 0.6 067

0.4 0.4 0.4 '

0.2 —®— Without drift 0.2 —#— Only distance 0.2-|M=m Centroid
With drift With features Overlap

0.0

0.0 T T T 0.0
0.025 0.05 0.075 0.1 Area1 AreaZ
Frame interval

1234567
Frames skipped
Fig. 2. (a) An example snapshot for the mouse epidermis dataset. The white lines in-
dicate the centroid displacement between frames. (b) TE as a function of max_dis-
tance and splitting max_distance for the mouse epidermis dataset. The red
point indicates the maxima. (c) An example snapshot for the cell migration dataset.
(d) TE score for the cell migration dataset with skipped frames, with or without the
drift term in the metric. () An example snapshot for the colored particles dataset.
(f) TE score for the colored particles dataset with different frame intervals, with or
without the feature difference term in the metric. The error bar indicates the stand-
ard deviation of five trials. (g) Mitotic branching correctness score for the mouse
epidermis dataset, tracked with the centroid distances (centroid) or the overlap ratio

(overlap). The error bar indicates the standard deviation of five trials

20z ABIN L€ UO Josn “Alun eBexIysY Aq 8€ 1 /889/66L0BI0/ L /6E/SIOIHE/SONEWLIOJUIONG/LLO0D dNO DILSPEDE//:SARY WO, PAPEOJUMO(T

https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data

LapTrack: linear assignment particle tracking with tunable metrics

(long-term tracking F-score). We used the Evaluation Platform soft-
ware (Versari et al., 2017) to calculate the F-scores. Supplementary
Figure S2 shows that this simple tracker achieves TE higher than 0.9
for all the datasets, and the F-scores are comparable to or higher
than most published methods (Versari ez al., 2017), except the long-
term tracking F-score for TestSet 3 and 4, which have frames with
large cell displacements. Note that the previous methods track the
cells after their segmentation pipeline, whereas we started with the
ground-truth segmentation which can be advantageous.
Nevertheless, this result suggests that the distance-based LAP track-
er can generate tracks with accuracy comparable to data-specific
tracking methods, as long as we start with sufficiently accurate
segmentation.

We also performed a similar benchmark with the C2C12 dataset
and found that the distance-only tracker yields the maximum TE of
0.998 when starting from ground-truth segmentation (Supplementary
Fig. S3). This is higher than the score from the cutting-edge graph neur-
al network-based tracking method; 0.976, which was obtained from
the test including segmentation and in a larger dataset (Ben-Haim and
Riklin-Raviv, 2022).

3.3 Tunable cost function improves tracking

performance
We next investigated if variable cost functions help improve the
tracking score for different datasets.

In Figure 2¢, we show a snapshot of the cell migration dataset.
Here, the cells are moving collectively toward the upper open re-
gion. Due to this drift, LAP-based tracking based solely on
Euclidean distance fails with large frame intervals, as demonstrated
in Figure 2d using datasets with skipped frames. This situation can
be easily fixed by changing the cost function by adding a drift term
to the Euclidean distance as

I(xi,x;) = ||xi — xj + d||3 3)

with the drift parameter d € R* and defining g and s analogously
(Fig. 2d, Supplementary Fig. S4). We used 5% of the non-dividing
and dividing connections to tune d as well as the cut-offs so that
they optimize the true positive rate of the connections. The details
are summarized in the Supplementary Material.

In real experimental data, particles may have features that help
to identify species, such as the size, shape, and fluorescent intensities
of genetic labels. In those cases, we can use those features in addition
to the Euclidean distances to improve the performance. To illustrate
this, we measured the tracking performance for simulated particles
with eight species, characterized by different sets of feature values
corresponding to RGB colors (Fig. 1e, see Section 2.1.5 for details).
We then defined the cost function as

I({xi i A 6}) = llxi = xil13 + wllei — 6113, (4)

where ¢;, ¢; € R are the feature vectors. We tuned the parameter w
as well as the distance cut-off using the training data with 100
frames so that the tracking result maximizes the connection Jaccard
index. We then measured the tracking scores for an independent
dataset with 100 frames. As shown in Fig. 2f, with the features used
in the metric, the target effectiveness with large frame interval
remains above 0.8 while it drops to ~0.4 when only Euclidean dis-
tance is in the metric (w =0), illustrating the performance improve-
ment by including the particle features. We also observed an
improvement in the other scores (Supplementary Fig. S5).

For segmented images, we can also use the overlap between seg-
mented regions to calculate the cost (Chalfoun et al., 2010; Ershov
et al., 2022; Padovani et al., 2022). The flexible implementation
allows us to integrate the overlap metric in addition to the distance
in the LAP framework. We define / (with g and s analogously) as

it 4
I(Li,Lj) = —log \ ——— (5)

which measures the overlap, where L; and L; are the set of pixel

coordinates of the segmentation area for the particle i and j and A is
a parameter. By comparing the tracking performance for the mouse
epidermis dataset with the squared centroid Euclidean distance
cases, we found that replacing the metric improves the mitotic
branching correctness by ~10% (Fig. 2g).

4 Conclusion

In this article, we showed how the LAP-based tracking pipeline with
additional flexibility and optimizability can be useful in improving
tracking performance in certain situations, and easily combined
with visualization tools to conduct manual corrections. LapTrack,
in large part, is complementary to TrackMate (Ershov ez al., 2022),
which has a useful graphical user interface, support for including
feature value differences, and its own optimization pipeline.
Compared with TrackMate, LapTrack can take arbitrary inputs and
cost functions and is flexible in its output, making it easier to con-
nect with other upstream and downstream analysis pipelines.
Trackpy (Allan et al., 2021) provides a tracking routine based on
the algorithm by Crocker and Grier (1996) in Python, as well as
functions for particle detection, analysis and data input/output. One
major difference is LapTrack’s ability to detect splitting and merging
particles, which makes it more suitable for cell tracking. The track-
ing function in LapTrack is designed to help make accurate and vali-
dated tracks quickly and efficiently, with the hope to increase the
amount of ground-truth data that can be used in training more
sophisticated tracking methods.

With a sufficient amount of manually annotated ground-truth
data, machine learning-based approaches will likely outperform the
current parameter optimization strategy of simple affinity metrics.
Due to its flexibility, our package can be easily combined with strat-
egies such as one-to-one association affinity learning (Emami et al.,
2020; Li et al., 2009), structured learning (Lou and Hamprecht,
2011), and the metric learning approach combined with graph neur-
al networks (Weng et al., 2020), serving as a reusable platform for
implementation.

Acknowledgements

We appreciate Dominik Waibel, Benedikt Mairhoermann, Tingying Peng,
Carsten Marr and Matthias Meier for discussion; and Rory Cerbus, Somayeh
Zeraati and Takaki Yamamoto for the reading of the manuscript. We ac-
knowledge support by the RIKEN Information systems division for the use of
the Supercomputer HOKUSAI BigWaterfall.

Funding

This work was supported by JSPS KAKENHI [JP22K14016 to Y.T.E.J; JSPS
KAKENHI [JP18H04760, JP18K13515, JP19H05275 and JP19HO05795 to
KK.].

Conflict of Interest: none declared.

Data availability

The data underlying this article are available in GitHub at https://github.com/
yfukai/laptrack and https://github.com/NoneqPhysLivingMatterLab/laptrack-
optimisation, and archived in Zenodo at https://doi.org/10.5281/zenodo.
5519537 and https://doi.org/10.5281/zenodo.7435087.

References

Akiba,T. et al. (2019) Optuna: a next-generation hyperparameter optimiza-
tion framework. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery ¢& Data Mining, KDD ’19.
Association for Computing Machinery, New York, NY, USA. pp.
2623-2631.

Allan,D.B. et al. (2021) soft-matter/trackpy: Trackpy v0.5.0. Zenodo. https://
doi.org/10.5281/zenod0.4682814.

20z ABIN L€ UO Josn “Alun eBexIysY Aq 8€ 1 /889/66L0BI0/ L /6E/SIOIHE/SONEWLIOJUIONG/LLO0D dNO DILSPEDE//:SARY WO, PAPEOJUMO(T

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac799#supplementary-data
https://github.com/yfukai/laptrack
https://github.com/yfukai/laptrack
https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
https://github.com/NoneqPhysLivingMatterLab/laptrack-optimisation
https://doi.org/10.5281/zenodo.5519537
https://doi.org/10.5281/zenodo.5519537
https://doi.org/10.5281/zenodo.7435087
https://doi.org/10.5281/zenodo.4682814
https://doi.org/10.5281/zenodo.4682814

Y.T. Fukai and K.Kawaguchi

Ben-Haim,T. and Riklin-Raviv,T. (2022) Graph neural network for cell track-
ing in microscopy videos. In: Avidan,S. et al. (eds.) Computer Vision —
ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, Vol. 13681.
Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_36.

Bise,R. et al. (2011) Reliable cell tracking by global data association. In: 2011
IEEE International Symposium on Biomedical Imaging: From Nano to
Macro. IEEE, Chicago, IL, USA. pp. 1004-1010. https://doi.org/10.1109/
ISBI.2011.5872571.

Bove,A. et al. (2017) Local cellular neighborhood controls proliferation in cell
competition. Mol. Biol. Cell., 28, 3215-3228.

Chalfoun,]. et al. (2010) Overlap-based cell tracker. J. Res. Natl. Inst. Stand.
Technol., 115, 477-486.

Chen,M. (2021) Chapter 5 - Cell tracking in time-lapse microscopy image
sequences. In: Chen,M. (ed.) Computer Vision for Microscopy Image
Analysis, Computer Vision and Pattern Recognition. Academic Press,
Cambridge, MA, USA, pp. 101-129.

Chenouard,N. et al. (2009) Tracking algorithms chase down pathogens.
Biotechnol. J., 4, 838-845.

Chenouard,N. et al. (2014) Objective comparison of particle tracking meth-
ods. Nat. Methods, 11, 281-289.

Crocker,].C. and Grier,D.G. (1996) Methods of digital video microscopy for
colloidal studies. J. Colloid Interface Sci., 179, 298-310.

Cuny,A.P. et al. (2022) Cell region fingerprints enable highly precise single-cell
tracking and lineage reconstruction. Nat. Methods, 19, 1276-1285.

Emami,P. et al. (2020) Machine learning methods for data association in
multi-object tracking. ACM Comput. Surv., 53, 1-34.

Ershov,D. et al. (2022) TrackMate 7: integrating state-of-the-art segmentation
algorithms into tracking pipelines. Nat. Methods, 19, 829-832.

Hagberg,A.A. et al. (2008) Exploring network structure, dynamics, and func-
tion using NetworkX. In: Varoquaux,G. et al. (eds) Proceedings of the 7th
Python in Science Conference. Pasadena, CA, USA, pp. 11-15.

Jaqaman,K. et al. (2008) Robust single-particle tracking in live-cell time-lapse
sequences. Nat. Methods., 5,695-702.

Jonker,R. and Volgenant,A. (1987) A shortest augmenting path algorithm for
dense and sparse linear assignment problems. Computing, 38, 325-340.

Ker,D.F.E. (2017) Phase contrast time lapse microscopy image datasets with
human-generated ground truths and computer-aided cell tracking annota-
tions. OSF. https://doi.org/10.17605/OSF.IO/YSAQ2.

Ker,D.F.E. et al. (2018) Phase contrast time-lapse microscopy datasets with
automated and manual cell tracking annotations. Sci. Data, 5, 180237.

Kuhn,H.W. (1955) The Hungarian method for the assignment problem.
Naval Res. Logistics, 2, 83-97.

Li,Y. et al. (2009) Learning to associate: HybridBoosted multi-target tracker
for crowded scene. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, Miami, FL, USA, pp. 2953-2960. https://doi.org/10.
1109/CVPR.2009.5206735.

Lou,X. and Hamprecht,F.A. (2011) Structured learning for cell tracking. In:
Advances in Neural Information Processing Systems, Vol. 24. Curran
Associates, Inc., pp. 1296-1304.

McKinney,W. (2010) Data structures for statistical computing in Python. In:
van der Walt,S. and Millman,]. (eds) Proceedings of the 9th Python in

Science Conference, Austin, TX, USA, pp. 56-61. https://doi.org/10.25080/
Majora-92bf1922-00a.

Meijering,E. et al. (2009) Tracking in cell and developmental biology. Semin.
Cell Dev. Biol., 20, 894-902.

Mesa,K.R. et al. (2018) Homeostatic epidermal stem cell self-renewal is driven
by local differentiation. Cell Stem Cell, 23, 677-686.e4.

Moritz,P. et al. (2018) Ray: a distributed framework for emerging Al applica-
tions. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, USA,
pp. 561-577.

Padovani,F. et al. (2022) Segmentation, tracking and cell cycle analysis of
live-cell imaging data with Cell-ACDC. BMC Biol., 20, 174.

Pylviniinen,].W. et al. (2022) Quantitative comparison of tracking perform-
ance using TrackMate-Helper. Zenodo. https://doi.org/10.5281/zenodo.
6255991.

Schindelin,]. et al. (2012) Fiji: an open-source platform for biological-image
analysis. Nat. Methods, 9, 676-682.

Schneider,C.A. et al. (2012) NIH image to Image]: 25 years of image analysis.
Nat. Methods, 9, 671-675.

Schoenholz,S. and Cubuk,E.D. (2020) JAX MD: a framework for differenti-
able physics. In Advances in Neural Information Processing Systems, Vol.
33. Curran Associates, Inc., pp. 11428-11441.

Sofroniew,N. et al. (2022) napari: a multi-dimensional image viewer for
Python. Zenodo. https://doi.org/10.5281/zenod0.6598542.

Stringer,C. et al. (2021) Cellpose: a generalist algorithm for cellular segmenta-
tion. Nat. Methods, 18, 100-106.

The pandas development team. (2020) pandas-dev/pandas: pandas. Zenodo.
https://doi.org/10.5281/zenod0.3509134.

Tinevez,].-Y. et al. (2017) Trackmate: an open and extensible platform for
single-particle tracking. Methods, 115, 80-90.

Ulicna,K. et al. (2021) Automated deep lineage tree analysis using a Bayesian
single cell tracking approach. Front. Comput. Sci., 3, 92.

Ulman,V. et al. (2017) An objective comparison of cell-tracking algorithms.
Nat. Methods, 14, 1141-1152.

van der Walt,S. et al.; scikit-image contributors. (2014) Scikit-image: image
processing in python. Peer], 2, e453.

Versari,C. et al. (2017) Long-term tracking of budding yeast cells in brightfield
microscopy: cellStar and the evaluation platform. J. R. Soc. Interface, 14,
2016070S.

Weng,X. et al. (2020) GNN3DMOT: graph neural network for 3D
multi-object tracking with 2D-3D multi-feature learning. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, pp. 6499-6508. https://doi.org/10.1109/CVPR42600.
2020.00653.

Xu,Y. et al. (2020) How to train your deep multi-object tracker. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, pp. 6787-6796. https://doi.org/10.1109/
CVPR42600.2020.00682.

Yamamoto,T. et al. (2022) Probing the rules of cell coordination in live tissues
by interpretable machine learning based on graph neural networks. PLoS
Comput. Biol., 18,e1010477.

20z ABIN L€ UO Josn “Alun eBexIysY Aq 8€ 1 /889/66L0BI0/ L /6E/SIOIHE/SONEWLIOJUIONG/LLO0D dNO DILSPEDE//:SARY WO, PAPEOJUMO(T

https://doi.org/10.1007/978-3-031-19803-8_36
https://doi.org/10.1109/ISBI.2011.5872571
https://doi.org/10.1109/ISBI.2011.5872571
https://doi.org/10.17605/OSF.IO/YSAQ2
https://doi.org/10.1109/CVPR.2009.5206735
https://doi.org/10.1109/CVPR.2009.5206735
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.6255991
https://doi.org/10.5281/zenodo.6255991
https://doi.org/10.5281/zenodo.6598542
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1109/CVPR42600.2020.00653
https://doi.org/10.1109/CVPR42600.2020.00653
https://doi.org/10.1109/CVPR42600.2020.00682
https://doi.org/10.1109/CVPR42600.2020.00682

