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Abstract
Morphogenesis is a developmental process of organisms being shaped through complex and cooperative cellular movements. To understand 
the interplay between genetic programs and the resulting multicellular morphogenesis, it is essential to characterize the morphologies and 
dynamics at the single-cell level and to understand how physical forces serve as both signaling components and driving forces of tissue defor-
mations. In recent years, advances in microscopy techniques have led to improvements in imaging speed, resolution and depth. Concurrently, 
the development of various software packages has supported large-scale, analyses of challenging images at the single-cell resolution. While 
these tools have enhanced our ability to examine dynamics of cells and mechanical processes during morphogenesis, their effective integra-
tion requires specialized expertise. With this background, this review provides a practical overview of those techniques. First, we introduce 
microscopic techniques for multicellular imaging and image analysis software tools with a focus on cell segmentation and tracking. Second, 
we provide an overview of cutting-edge techniques for mechanical manipulation of cells and tissues. Finally, we introduce recent findings on 
morphogenetic mechanisms and mechanosensations that have been achieved by effectively combining microscopy, image analysis tools and 
mechanical manipulation techniques.
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Introduction
The formation of ordered multicellular structures during 
embryonic development has long been a significant subject 
of research. Early studies attempted to elucidate the morpho-
genetic mechanisms during development through histologi-
cal observations [1]. In the post-Genome Project era, major 
progress has been made in uncovering the genetic and signal-
ing pathways that govern the morphogenesis of diverse yet 
robust organ and tissue structures.

Morphogenesis is driven by entities that are interlaced with 
gene regulatory networks, specifically, the cell shape alter-
ations and movements that are propelled by mechanical forces 
[2]. To understand how genetic programs orchestrate the for-
mation of structures and trace the causal relationships behind 
the process, we must both characterize the morphologies 
and dynamics at the single-cell scale and comprehend how 
physical forces serve as signaling components and drivers of 
deformation.

The field has seen the development of sophisticated 
microscopy techniques that improve observation speed, res-
olution and imaging depth. Various image analysis tech-
niques have also been developed to support large-scale,

single-cell-level analyses. Particularly, the development of 
machine-learning methods has enabled the quantification of 
challenging images [3,4]. Efforts have also been made to make 
those techniques widely accessible. Furthermore, advance-
ments in imaging, manipulation and analysis techniques 
have facilitated the comprehensive examinations of mechan-
ical processes during morphogenesis [5–9]. Specifically, the 
integration of diverse technologies has revealed intricate 
interactions between shapes, forces and signaling pathways
[10,11].

Despite the importance of combining different techniques, 
this growing sophistication demands increased expertise. With 
this background, this review aims to provide an overview 
of these techniques and briefly introduce them for practical 
applications. First, we introduce microscopies for multicel-
lular imaging. Next, we review image analysis techniques 
and software tools, focusing on cell instance segmentation 
and tracking which are essential for uncovering the rela-
tionships between microscopic cellular properties and macro-
scopic morphogenetic dynamics. Then we introduce cutting-
edge mechanical manipulation techniques to dissect mechan-
ical processes in living systems. Finally, we discuss the latest 
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research findings morphogenesis and illustrate how our under-
standing has progressed through the use of these imaging and 
analysis techniques.

Three-dimensional imaging microscopy for 
morphogenesis research
Cell morphology and movement bridge the macroscopic mor-
phology of organs and tissues and their underlying micro-
scopic molecular mechanisms. Advancements in imaging 
techniques have substantially contributed to morphogenesis 
studies by dissecting multicellular dynamics during devel-
opment [10,11]. Although requirements for factors such 
as area, speed, resolution and phototoxicity often con-
flict with each other [11], the development of innovative 
microscopes in recent decades has enabled the expansion of
the limits.

A commonly used microscopy in this field is scanning laser 
confocal microscopy. Unlike wide-field microscopy, confocal 
microscopy achieves the distinction of z-planes by eliminat-
ing light originating from regions outside the focal plane using 
a pinhole, thus enabling the acquisition of three-dimensional 
(3D) images. Notably, with recent advancements in detector 
sensitivity (e.g. the development of GaAsP detectors), confocal 
microscopy has facilitated the acquisition of clearer images. 
Additionally, the integration of image scanning microscopy 
[12] principles into confocal microscopy, for example, the 
use of array detectors such as AiryScan (Zeiss) and NSPARC 
(Nikon) has significantly enhanced resolution and achieving 
sub-diffraction limit resolution.

However, answering biological questions in morphogenesis 
sometimes requires faster, wider and deeper image acquisi-
tion beyond the capability of scanning confocal microscopy. 
Here we focus on three major microscopy techniques that 
have various advantages to scanning confocal microscopy in 
some cases, with emphasis on recent technical advancements. 
First, we introduce spinning-disk confocal microscopy that 
empowers live 3D imaging through rapid image acquisition 
capabilities. Then we describe two-photon microscopy that 
excels at imaging deeper regions within the tissue. Finally, we 
highlight the light-sheet microscopy that is characterized by its 
rapid image acquisition, expansive field of view, and consider-
able depth penetration, and capable of capturing entire tissue 
images. The typical specifications for those microscopies are 
summarized in Table 1. 

Spinning-disk confocal microscopy
Conventional confocal microscopy has been used as a stan-
dard method for acquiring 3D images. However, the speed and 

phototoxicity are among the problems for live 3D imaging 
due to the image acquisition process that requires repeated 
laser scanning. Spinning-disk confocal microscopy emerged 
as an alternative to address these limitations. In contrast to 
standard point-scanning methods, which illuminate one point 
in a sample at a time and then scan the specimen, spinning-
disk confocal microscopes illuminate multiple (∼1000) points 
simultaneously using a pinhole array disk (Table 1, Fig. 1a). 
This reduces the time required for image acquisition and laser 
scanning. The system can be extended to simultaneous two-
color live 3D imaging, making it suitable for applications 
such as calcium imaging [13]. Most spinning-disk confocal 
microscopes are installed at camera ports, enabling the con-
struction of a custom-built optical pathway, such as a pathway 
for optical stimulation or optical tweezers, using an episcopic 
illuminator port [14,15].

Recently, advanced microscopy methods have been devel-
oped by combining spinning-disk confocal microscopy with 
other techniques, such as two-photon microscopy (described 
further) or super-resolution microscopy techniques, yielding 
better performance in terms of imaging depth and resolu-
tion. For example, two-photon microscopy with the improved 
pinhole disk-equipped spinning-disk confocal microscopy 
achieved observation of ∼100 μm deep regions [16]. In addi-
tion, structured illumination microscopy (SIM) was combined 
with spinning-disk confocal microscopy by using a disk with 
a fine stripe pattern [17]. This microscope improved the reso-
lution and achieved ∼120 nm x–y resolution with a speed of 
30–100 frames/s.

Compared with point-scanning confocal microscopy, 
spinning-disk microscopy has the disadvantage of a relatively 
lower resolution along the z-axis. This is because the fixed 
pinhole size makes it impossible to match the size to the 
optimal one—one Airy Unit (AU) of the system. Generally 
speaking, spinning-disk microscopes are designed for high-
magnification objective lenses; for example, the 1 AU size of 
100×/1.35NA objective is ∼50 μm, which matches the typical 
spinning-disk pinhole size.

Two-photon microscopy
Two-photon excitation microscopy is suitable for deep-tissue 
observation (Table 1, Fig. 1b). Unlike the majority of fluo-
rescent microscopes that rely on the absorption of a single 
photon to excite fluorophores, this technique uses two-photon 
absorption. Two-photon excitation refers to the excitation 
of a single fluorophore by simultaneous absorption of two 
or more photons with lower energy than that of the flu-
orescent light. In contrast to single-photon excitation, for 
which the excitation light needs to have a shorter wavelength 

Table 1. Typical features of microscopy techniques

 Microscopy

 Conventional confocal  Spinning-disk Confocal  Two-photon  Light-sheet

Objective 4×/0.16 100×/1.45 4×/0.16 100×/1.45 10×/0.6 Obj 25×/1.0 Obj 5×/0.1&5×/0.16 10×/0.2&20×/1.0
Speed  <∼30 fps  <∼1000 fps  <∼30 fps  <∼100 fps
Resolution 

(x × z)
∼1.5 × 40 μm ∼0.2 × 1 μm 2 × 100 μm ∼0.2 × 1 μm >0.7 × 7 μm >0.4 × 2.5 μm ∼2 × 14 μm∼ ∼0.3 × 2 μm

Field ∼4500 μm ∼180 μm ∼5500 μm ∼220 μm ∼1800 μm ∼720 μm ∼3500 μm ∼1000 μm
Imaging 

depth
 <100 μm  <100 μm  <1000 μm [19]  <100 μm
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Fig. 1. Comparison of microscopy (a) Schematic of spinning-disk confocal microscopy. A rotating spinning-disk (illustrated in black) with numerous 
pinholes is placed in the equivalent sample plane, which scans the sample plane with multiple points (blue lines). (b) Schematic of two-photon excitation 
microscopy. The excitation laser, illustrated in red, is focused in the sample and excites the fluorophore when two photons are simultaneously absorbed 
by fluorophores. The emitted fluorescence, illustrated in green, has a shorter wavelength than that of the excited laser. (c) Schematic of the light-sheet 
microscopy. A sample (not illustrated), usually embedded in gel, is located at the intersecting point of the optical axes of two objective lenses. One 
objective illuminates a single plane in the sample (illustrated in blue plane), and another objective lens observes this plane in a single shot. The upper 
right panel shows a schematic of axially swept light-sheet microscopy. The lower right panel shows the comparison of the Gaussian beam and the 
Bessel beam. The blue line represents the outline of light rays, and the light blue regions in the Bessel beam represent the side lobes.

(higher energy) than that of the fluorescence, the wavelength 
of the excitation light is longer than that of the fluorescence.

Because of the low probability of two-photon absorption, 
the excitation light needs to have a high peak flux. There-
fore, infrared femtosecond pulsed lasers are typically used as 
the excitation light. At infrared wavelengths, typical biologi-
cal specimens have a spectral range called an optical window 
characterized by low absorption and scattering [18], making 
them suitable for deep-tissue observation, in the best case, a 
1 mm or deeper region can be observed [19]. Because of the 
long wavelength of the excitation laser, the resolution of two-
photon microscopy is slightly lower than that of conventional 
confocal microscopy (see Table 1).

Light-sheet microscopy
For 3D observations using a low-magnification objective lens, 
light-sheet microscopy is likely a better option (Table 1, 
Fig. 1c) [20,21]. In the context of resolution and speed, light-
sheet microscopy outperforms confocal microscopy when 
conducting observations at magnifications typically set at 
20× or lower (see Table 1). The assembly of a light-sheet 
microscope differs from that of a conventional microscope. 
Except for single-objective light-sheet microscopes [22], most 
light-sheet microscopes have two (or more) objective lenses 
arranged orthogonally for illumination and observation. 
By segregating the illumination and observation pathways, 
light-sheet microscopy presents three distinct advantages: 
reduced phototoxicity, enhanced imaging speed and improved
z-resolution.

From the perspective of phototoxicity and photobleach-
ing, light-sheet microscopy exhibits a distinct advantage by 
employing the illumination objective to selectively irradiate 
excitation light solely within the desired plane, whereas con-
focal microscopy indiscriminately illuminates excitation light 
in both the upper and lower regions of the focal point. In 
terms of imaging speed, the light-sheet microscope possesses 

the capability to capture an image in a single acquisition 
without the need for xy-scanning, as required in conven-
tional confocal microscopy. As a result, it can rapidly acquire 
3D images by scanning the sample or the light sheet along 
the z-axis achieved by moving the focal plane of the objec-
tive lens at high speed [23,24]. For example, the light-sheet 
microscope can take a 3D movie of a moving Amoeba with 
a size of hundreds of micrometers [24]. The last advan-
tage pertains to z-resolution. In light-sheet microscopy, the 
z-resolution demonstrates a linear correlation with the numer-
ical aperture (NA) of the illumination light. In contrast, the 
z-resolution of confocal microscopy is contingent upon NA2. 
Consequently, when using a lower-magnification objective 
lens, typically characterized by lower NA values, light-sheet 
microscopy attains superior z-resolution in comparison to 
confocal microscopy (Table 1).

In light-sheet microscopy, a challenge arises from the trade-
off between the field of view and z-resolution. The z-resolution 
in light-sheet microscopy is governed by the beam waist of 
the light sheet, and consequently, a thinner light sheet yields 
higher z-resolution. In turn, the width (or depth) of the light 
sheet is directly correlated with the field of view. In the case 
of Gaussian beams, the width (or depth) of the light sheet is 
directly correlated to the Rayleigh length, which is defined 
as πω2/λ, where ω and λ represent the beam waist and the 
wavelength, respectively. This equation implies that as the z-
resolution is increased, ω decreases, consequently reducing the 
Rayleigh length. As a result, z-resolution and field of view are 
conflicting factors. Nonetheless, recent innovations in light-
sheet microscopy have effectively extended the constraints of 
this limitation, primarily achieved through the creation of a 
larger field of view by segmenting narrow areas or leveraging 
the diffraction properties of light.

One effective method is axially swept light-
sheet microscopy (Fig. 1c) [21]. In this technique, the in-
focus region of the light sheet is dynamically swept across 
the sample through the utilization of a remote focus system. 
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Consequently, this specialized light sheet effectively ‘scans’ the 
sample by employing only the thinner portion of the Gaus-
sian beam (the region near the beam waist). Synchronization 
of the active pixels of the complementary metal-oxide semi-
conductor (CMOS) camera with this thinner portion of the 
light sheet allows for the exclusion of blur. This synchroniza-
tion ensures that only images captured within the thin sheet 
region are recorded, achieved by sweeping a narrow strip of 
active pixels across the sensor in this type of camera while 
maintaining acquisition speed.

An alternative approach involves the use of a light sheet 
generated by non-Gaussian beams, such as Bessel beams 
(Fig. 1c) and lattice light-sheet microscopy (LLSM). In Bessel-
beam light-sheet microscopy [25,26], the light sheet is created 
using a Bessel beam, which is constructed from an oriented 
ring-shaped planar wave, often facilitated by axicon lenses. 
The intensity profile of the cross-section of the Bessel beam 
exhibits a single bright region with a smaller diameter that is 
narrower than the diffraction limit (referred to as the zero-
order Bessel beam), along with numerous side lobes arranged 
in concentric circles. This zero-order Bessel beam extends 
deeply along the optical axis, resulting in Bessel beam light-
sheet microscopy possessing a wide field of view with a thin 
illumination light sheet.

One of the most cutting-edge advancements in light-sheet 
microscopy is LLSM [27]. LLSM employs a spatial light 
modulator to illuminate the sample with a spatially modu-
lated optical lattice light sheet. LLSM demonstrates a note-
worthy reduction in sidelobes, the higher-order diffraction 
waves responsible for blurring, in comparison to Bessel 
beam light-sheet microscopy. However, the construction of 
LLSM necessitates more intricate and expensive optical com-
ponents, including a spatial light modulator. Remarkably, 
this light sheet represents one of the thinnest reported to 
date and extends deeply along the optical axis. Further-
more, this lattice-like structure serves as structured illumi-
nation for SIM. This mechanism overcomes the diffraction 
limit of conventional light-sheet microscopy; typically, LLSM 
achieves ∼150 × 280 nm in x–z resolution. Moreover, the 
application of adaptive optics to LLSM that corrects sample-
induced aberrations by a deformable mirror, Liu et al. suc-
ceeded in observing deep tissue regions exceeding 100 μm in
depth [28].

Image analysis tools for multicellular 
systems—cell segmentation, tracking and 
more
Advances in the microscopy techniques and increases in com-
putational resources have enhanced the quality and quantity 
of data obtainable from imaging. For example, whole-embryo 
live imaging is possible for various model organisms [11,29], 
enabling the observation of cellular shapes, motion and dif-
ferentiation. Accordingly, computational methods for quan-
tification have been actively developed, paving the way for 
quantitative understanding of multicellular phenomena.

As partly discussed in the following sections, character-
izing single-cell scale properties provides opportunities to 
understand the relationship between cellular properties and 
macroscopic morphologies [30–32], attribute macroscopic 
deformations to cellular events [33], infer physical properties 
[34], and reconstruct lineage trees [29]. In addition, cellular 

segmentation and tracking enable the unbiased inference of 
rules behind cellular behaviors using machine-learning tech-
niques in homeostasis [35], and the methodology is readily 
adaptable to various developmental processes.

Since the growing size of a typical dataset has made purely 
manual analysis prohibitive, various automated computa-
tional methods have been developed to help the segmentation 
and tracking of single cells. Although non-machine-learning-
based methods have been successfully applied to images with 
a high signal-to-noise ratio and clear features, these con-
ditions are not always satisfied owing to fundamental con-
straints such as speed, resolution and phototoxicity [11]. 
More recently, machine-learning-based methods have been 
developed to yield better performance for challenging data 
with appropriate training datasets [3,4]. Moreover, there have 
been continuous efforts to implement those algorithms as pub-
licly available software tools usable without expertise. As 
current machine-learning-based methods often require man-
ual annotation and validation, various software programs 
have also been developed for this purpose.

In this section, we focus on instance segmentation and cell 
tracking techniques necessary for those analyses and intro-
duce the algorithms and software developed thus far. In partic-
ular, from the perspective of reproducibility and shareability 
of the analysis, we emphasize open-source software accessible 
to non-experts. Many tools can analyze 2D images of ex vivo
tissues or cultured cell lines, as well as 3D in vivo images. We 
also briefly discuss image preprocessing.

Workflow for single-cell image analysis
Figure 2a illustrates the typical workflow of a single-cell scale 
analysis. In the workflow, the cells are detected and linked into 
tracks to construct cell lineages. In the following subsections, 
we review the algorithms and tools used for cell segmentation 
and tracking.

The required accuracy of the analysis and preferred label-
ing strategy vary depending on the purpose. For example, to 
quantify the population distribution of a snapshot without 
tracking, it may be sufficient to exclude failed segmentations 
according to some criteria. In contrast, to track cells over a 
long period with parent–child relationships, the segmentation 
and tracking should be highly accurate, given that the number 
of complete tracks exponentially decreases [36]. In particu-
lar, for 3D images and crowded cells, it is still challenging to 
reconstruct complete lineage trees over a long period [4,37] 
and manual curation often remains essential even with current 
state-of-the-art techniques [36,38]. Tracking sparsely labeled 
cells or regions instead of all cells can be less challenging and 
may be preferred when dense tracks are not required [29,39]. 
A notable example is the analysis method proposed in Ref. 
[40] that enables inference of deformation dynamics of 2D 
epithelial sheets in the 3D space using trajectories of sparsely 
labeled cells or markers attached on the tissue.

Cell segmentation tools
To quantify images at the cellular level, it is necessary to 
detect the locations of cells or segment cellular regions from 
the background and adjacent cells. This subsection par-
ticularly focuses on segmentation methods [3,41–43] that 
can provide information on the morphologies as well as
positions.
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Fig. 2. Illustration of segmentation and tracking concepts (a) Typical image processing workflow for single-cell scale segmentation and tracking 
analysis. The expected outcome is presented below each illustration. This workflow implicitly uses the tracking-by-detection approach (see main text).
(b) Illustration of the semantic and instance segmentation. The colors represent the values obtained by the segmentation algorithms. In semantic 
segmentation, close objects are detected as a connected region (white arrow). The original image is taken from Ref. [188], licensed under the Creative 
Commons 0 license (See https://github.com/CellProfiler/examples/issues/41 for discussion). (c) Illustration of the tracking-by-detection approach. The 
segmented/detected cells are temporally connected to find tracks. The image is taken from Ref. [88], licensed under the Creative Commons Attribution 
license (https://creativecommons.org/licenses/by/4.0/).

Semantic or instance segmentation methods are frequently 
used for segmenting cellular or nuclear areas [3] (Fig. 2b). 
Semantic segmentation divides a region into object classes by 
assigning a label to each pixel and does not distinguish indi-
vidual objects connected to or overlap each other (Fig. 2b, 
center). In contrast, instance segmentation identifies each 
object and thus enables the quantification of individual cell 
properties (Fig. 2b, right). Note that semantic segmentation 
is sometimes performed as a processing step for the instance 
segmentation.

Classically, methods such as thresholding followed by 
watershed separation or edge detection have been used for 
the instance segmentation [41,42]. Software such as ImageJ 
[44] and scikit-image [45] implement various functions for 
these tasks. In addition, tools such as Jupyter Notebook 
(https://jupyter.org/) [46] and napari [47,48] can be used for 
interactive analysis in Python. MorphoGraphX [49,50] is 
a GUI software that enables the segmentation of cells on 
curved surfaces by the watershed method. TissueAnalyzer 
[51] (formerly known as the packing analyzer [52]) also 
implements the watershed method as well as downstream 
analysis functions. See Refs. [41,42] for a review of these 
methods and Refs. [53,54] for practical tutorials. These meth-
ods have the advantages of requiring fewer parameters to 
be adjusted, allowing segmentation even without annotated 
data, and often exhibiting computational performance supe-
riority compared to machine-learning methods. For example, 
in Ref. [55], the authors developed a robust segmentation 
method for membrane-stained embryos, enabling the quan-
tification of single-cell morphogenetic changes during devel-
opmental processes. However, obtaining accurate segmenta-
tion using these methods can be more challenging with low 
signal-to-noise ratio, non-uniform staining or complex cell
morphology.

Machine-learning-based methods that exhibit robust per-
formance have been actively developed and utilized when 

appropriate training datasets can be prepared. For example, 
those algorithms are outperforming the others for a majority 
of datasets in the Cell Tracking Challenge (CTC) [4], indi-
cating that machine learning can be a better option when 
sufficient training data are available. In particular, deep neu-
ral network models, such as the U-Net [56], are a popular 
choice among segmentation algorithms [57], as can be seen 
with the CTC participants [4] and published algorithms com-
prehensively reviewed in Ref. [3]. While general network 
structures and models such as Mask R-CNN (Region-based 
Convolutional Neural Network) [58] have been used for cell 
segmentation [59], specific model architectures have also been 
proposed for better performance [3,60–64]. There has been 
a growing effort to make these models widely accessible as 
Python packages. Examples include StarDist [60], Cellpose 
[62,63] and EmbedSeg [64], some of which can also be used 
in ImageJ [44,65–67].

Despite their performance, a majority of current methods 
for cell segmentation are supervised machine-learning meth-
ods that require a large amount of manually validated train-
ing data, and laborious validation and annotation processes 
often hinder their application to new datasets. To overcome 
this problem, some software programs have adopted pre-
training models with images from various modalities. For 
example, the BioImage Model Zoo [68] releases pretrained 
models based on multiple datasets that users can use in 
Python, ImageJ [44] (using deepImageJ [67]), ilastik [69], 
ImJoy [70], Icy [71] and QuPath [72]. Pretrained models 
have also been released for models such as Memster [73] 
(https://github.com/vanvalenlab/intro-to-deepcell), LIVECell 
[74] (https://github.com/sartorius-research/LIVECell), and 
Cellpose (https://github.com/MouseLand/cellpose) [62,63]. 
Weakly supervised methods that use abundant unlabeled 
images and labeled images can also be useful to avoid 
the bottleneck in the annotation. A competition for multi-
modal weakly supervised learning models was recently held at 
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the Thirty-sixth Conference on Neural Information Process-
ing Systems (https://neurips22-cellseg.grand-challenge.org/), 
where various methods have been benchmarked.

When pretrained models do not provide sufficient accu-
racy or not publicly available for target modality, it is nec-
essary to train them using newly annotated ground-truth 
data. Training such models requires a certain expertise, but 
the effort has been devoted to making this process more 
available. For example, a step-by-step Jupyter notebook 
has been released [75] (https://github.com/HenriquesLab/
ZeroCostDL4Mic), allowing users to download models from 
the BioImage Model Zoo and retrain them on real data. A 
GUI for training has made the training process more accessi-
ble [63]. We will further review available software packages 
and strategies for efficient manual annotation later.

Cell tracking tools
After the segmentation, tracking of the segmented regions is 
essential for understanding temporal property changes and 
lineage differentiation (Fig. 2a). Recently, there has been a 
shift towards automated tracking using various algorithms 
instead of the traditional labor-intensive manual process 
[37,43,76].

The cell tracking task can be framed within the broader 
context of computer vision, specifically as a multi-object 
tracking task [77,78]. Although various methods developed 
for general tasks can be used, several tools and algorithms 
have also been specifically tailored for cell tracking.

Several groups have published workflows of cell detection 
or segmentation and tracking dedicated to the 3D nucleus- 
or membrane-stained developing embryos [29,36,55,79,80], 
which may also work for images with a similar modality. 
In this subsection, we introduce cell tracking algorithms and 
software tools from a general perspective.

It is helpful to categorize the methods based on the pro-
cessing workflow, frames used for tracking, and types of cost 
functions. The first criterion categorizes the methods based on 
the relationship between segmentation or detection and track-
ing tasks. It is popular to employ the tracking-by-detection
approach, in which the algorithm detects objects in advance 
and determines their optimal assignments [77,81] (Fig. 2c). 
This approach has the advantage of simplicity and allows 
users to combine different segmentation and tracking tech-
niques, depending on their image modality. There are several 
methods that do not fit into this category, such as a machine-
learning method that train the model simultaneously for 
detection and tracking tasks [82], template matching, detec-
tion and tracking by the Gaussian mixture models [29,55,80], 
and simultaneous segmentation and tracking by registration 
(e.g. ASTEC method [83]) or deformable contour models [76]. 
Regarding the second criterion, tracking methods that use 
only past frames are called online methods, whereas offline
methods can use all the frames, including future ones. In 
general, offline methods have a performance advantage [77], 
whereas online methods can be applied to real-time experi-
ments. The final criterion is in the form of the cost function. 
In several tracking algorithms, the assignments are performed 
by maximizing a function called the posterior distribution of 
the assignments [77] or, equivalently, minimizing a cost func-
tion whose value depends on the assignments [37]. The forms 
of the cost functions can be either heuristically assumed or 
learned from annotated data.

Heuristic cost functions allow for tracking without a train-
ing step. The algorithm can be simplified further if it assumes 
that the association probability between cells depends only 
on their properties in two consecutive frames. For example, 
by defining the cost function as the square of the particle 
displacement, this algorithm can be regarded as the maxi-
mum likelihood method for particles undergoing Brownian 
motion [84] and was adapted to particles with splitting and 
merging processes [85]. Software such as TrackMate [86,87], 
LapTrack [88], CellProfiler [89], u-track [85] and Lineage 
Mapper [90] implement similar tracking algorithms. Tem-
poral information can also be used for Bayesian modeling 
by defining a cost function that depends on multiple frames. 
For example, tools such as btrack [91], TrackMate [86,87] 
and u-track [85] can perform cell tracking using the Kalman 
filter, which is particularly useful when temporal memory 
is present in the cell motion. Ilastik [69] and SpotTrack-
ing plugin in Icy [71] (https://icy.bioimageanalysis.org/plugin/
spot-tracking/), respectively, implement different probabilis-
tic models aware of under-segmentation [92] and undetected 
particles [93].

Machine-learning methods can be a suitable option when 
ground-truth annotations are available. Some works employ 
learning the temporal displacements of segmented regions. 
For example, the tracking module in ELEPHANT [79] uses 
the U-Net trained for the optical flow, whose output is used 
to improve the nearest-neighbor linking. Linajea [36,94] uses 
the U-Net to predict the displacement to the center of the iden-
tical object at the preceding frame, which is used to extract 
cell lineage graphs from possible detection and linking can-
didates. EmbedTrack [95], which is trained to predict the 
offsets between the positions of pixels belonging to a seg-
mented cell region and the center position of the identical cell 
at the previous frame, has shown competitive performance 
for several 2D CTC datasets. Alternatively, some works take 
an approach to train a model for association probabilities. 
For example, graph neural network-based methods [96] and 
methods that learn the probability of cell association using 
neural networks [97] have been proposed. Ref. [98] uses con-
volutional neural networks to assign cell-cycle states which 
are used at tracking. Still, machine-learning-based tracking 
algorithms are undergoing active development, and there is 
a need for comprehensive benchmarking to elucidate how the 
performance depends on the amount of training data and how 
they generalize for different modalities.

One barrier to the machine-learning approach is the diffi-
culty in preparing the training data. Incremental training using 
sparse annotation is a straightforward method for address-
ing this issue, and several tools have been developed in this 
direction. For example, the detection and tracking models of 
ELEPHANT [79] and Linajea [36,94] can be trained using 
sparse annotations, which enables incremental model per-
formance improvement with feasible time. Alternatively, the 
parameters of heuristic models can be tuned using ground-
truth annotations. LapTrack [88] allows tuning of the form of 
the cost function and parameter values with sparse ground-
truth annotations. TrackMate [86,87] also has a similar 
parameter-tuning capability.

Datasets and benchmarking
Benchmarking on datasets with ground-truth annotations 
is useful for determining how well these methods meet 
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the required performance criteria. For example, using 
quality-assured datasets, CTC [4,99] has been continuing 
to benchmark segmentation and tracking methods, and the 
Kaggle 2018 Data Science Bowl [100] has performed seg-
mentation benchmarks. In addition, there exist various 
publicly available datasets [3,62,101] that can be used for
benchmarking.

Although these benchmark results are useful for inferring 
the effectiveness of the method, it is important to note that 
they cannot be used as the sole basis for usability. This is 
because (i) different datasets have different annotation stan-
dards and qualities [3,63]; (ii) the benchmark ranks can be 
affected by the choice of annotators, test data and metrics 
[102] that do not necessarily correlate with biologically rel-
evant performance [103]; and (iii) although benchmarks typ-
ically use a large number of annotated datasets for training, it 
is time-consuming to prepare a large number of annotations 
by experts from the beginning in real experiments. In prac-
tice, the optimal method will likely depend on the size of the 
human annotations, the microscopy technique, and the exper-
tise of the researchers. Building a reproducible benchmarking 
platform [104], improving competition standards [102] and 
training sufficiently large and general models [105] can help 
improve this situation.

Manual annotation tools and assistance through 
machine learning
Achieving high accuracy in the analysis, training supervised 
machine-learning models, and measuring the prediction per-
formance often requires researchers to validate and correct 
segmentation and tracking results. Annotation tools play a 
crucial role in this context.

There are various manual segmentation annotation tools, 
as reviewed, for example, in Ref. [3]. In addition, napari 
[48] has recently been developed as a general image visual-
ization software with the ability to edit segmentation masks 
for images of arbitrary dimensions [47]. Napari’s ecosystem 
enables users to extend the software using plugins for various 
tasks, including semantic and instance segmentation (https://
www.napari-hub.org/). It can also be easily controlled using 
Python and integrated into a custom-built analysis workflow. 
In addition, Cellpose [62,63] is packaged with a GUI that sup-
ports editing segmentation for 2D images and in situ training 
and prediction of the instance segmentation model.

Although manual segmentation annotation for large 
images can be time-consuming, machine learning can assist 
this process. One example is the use of pixel classifiers, such 
as the Trainable Weka Segmentation in ImageJ [106,107], 
Labkit [108], ilastik [69], QuPath [72] and napari plug-
ins [109,110]. By providing sparse manual annotation of 
different regions, these models can be trained for semantic 
segmentation by classifying each pixel based on its features, 
including the surrounding context. This method is particularly 
useful for objects that are not adjacent to each other or sepa-
rated by clear boundaries because instance segmentation can 
be straightforwardly deduced from the result.

Pretraining can also be useful for generating annotated 
datasets with fewer manual annotations. As noted in previ-
ous subsections, there are several public segmentation models 
trained with various images. Even if the training dataset does 
not contain the same images as the target microscopy images, 
one can benefit from faster training than starting from scratch 

[63,70]. This can be interpreted in terms of transfer learning
[111], which involves leveraging knowledge from a different 
domain to enhance the prediction performance.

Another important concept is the human-in-the-loop train-
ing [55,63,70,73,112], which encompasses an approach that 
iteratively performs annotation and training processes instead 
of annotating all data at once. The annotation of each iter-
ations is used to train the model, and the trained model 
then generates a new segmentation that is again corrected 
by a human annotator. This approach can help decrease 
manual correction efforts to achieve similar performances
[63,70].

Although annotation and correction of tracking results 
are more challenging than segmentation, several open-source 
software programs have been developed for this purpose. 
For example, TrackMate [86,87] implements TrackScheme 
(https://imagej.net/plugins/trackmate/views/trackscheme) to 
edit the tracking results. In addition, various software pack-
ages support manual correction of segmentation-annotated 
[73,113–118] or point-annotated [119–123] tracking results. 
CATMAID [123], originally developed for large-scale 3D 
datasets, was successfully extended to manually curate cel-
lular lineages [80]. The idea of human-in-loop training can 
be utilized for tracking. For example, ELEPHANT [79] is 
a pioneering software package for human-in-loop training 
for tracking that focuses on 3D ellipsoidal object tracking 
instead of pixel-segmented objects. The nucleus detection and 
motion estimation models were trained using sparse anno-
tations, which enabled the iterative training of the tracking 
model. Annotation-preserving tracking [88] is another simple 
option for human-in-loop tracking, in which users can retrack 
cells that are not validated.

Image preprocessing
Although this section focuses primarily on segmentation and 
tracking, preprocessing also plays a critical role in data qual-
ity and should be carefully performed. Tools regarding spatial 
and temporal inhomogeneities, as well as image noise, are 
briefly discussed here. Readers can refer to Refs. [43,76] for 
further review.

Signal inhomogeneity that does not exist in the original 
specimen is called shading and is caused by various opti-
cal factors [124]. This can affect the segmentation quality 
and quantitative interpretation [125]. To suppress this effect, 
it is often desirable to prospectively estimate and compen-
sate for the shading patterns using special images without 
objects or retrospectively using the sample images themselves. 
Algorithms such as BaSiC [126] and CIDRE [125] have been 
proposed for retrospective correction, yielding better perfor-
mance than naive methods. For multi-positional images, it is 
necessary to perform this operation before stitching. Several 
open-source tools, including those in Refs. [127–130], can be 
used for stitching after shading correction.

Especially in low-illumination cases, Poisson noise due to 
the discreteness of photons and readout circuit noise can affect 
the downstream analysis. Methods ranging from spatial filters 
to machine learning can be used to reduce the impact of noise 
[131].

The imaging and analysis methods have supported the elu-
cidation of morphogenesis processes driven by, ultimately, 
mechanical forces. However, to infer causal relationships 
between mechanical forces and morphogenesis processes, 

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

icro/article/73/3/226/7475867 by R
IKEN

 Yokoham
a Institute user on 10 June 2024

https://www.napari-hub.org/
https://www.napari-hub.org/
https://imagej.net/plugins/trackmate/views/trackscheme


Microscopy, 2024, Vol. 73, No. 3 233

mechanical stimulation and manipulation methods are essen-
tial. In the following section, we turn our attention to those 
methods.

Mechanical signal in morphogenesis: 
manipulation tools and recent studies
Recent technological advancements have now made it pos-
sible to observe even the formerly ‘invisible’ elements, such 
as the mechanical interactions that influence multicellular 
tissues. Various methods have been developed for image-
based force measurements to estimate the tension and pressure 
applied to cells. For example, Bayesian inference of mem-
brane tension and cell pressure and statistical inference of 
mechanical models and their parameters have been proposed 
[34,132].

To gain insights into the roles of mechanical signals, it 
is necessary to analyze mechanical force as one of the bio-
logical signals, with the relationship among cellular motion, 
genetic networks and protein interactions. Similar to the per-
turbation of genes, such as knockdown or over-expression, 
the perturbation of mechanical signals is required to elucidate 
the function of the mechanical force within this relationship. 
Recently, precise and quantitative manipulation of mechanical 
forces has become possible using new microscopy techniques. 
In this section, we introduce tools for measuring and manip-
ulating mechanical forces, along with their applications in 
cutting-edge studies.

Numerous manipulation techniques and force measure-
ment equipment have been reported. We introduce the tools 
for applying mechanical perturbations at the cellular level 
and their applications. In particular, we focus here on tools 
that can be combined with optical microscopy introduced 
above, enabling the integration of mechanical perturbations 
with imaging capabilities.

Laser dissection
One of the simplest methods to perturb a mechanical signal is 
the laser dissection, which can disrupt the balance of the force 
by cutting biological objects such as plasma membranes with 
a focused pulsed laser. One application of this technique is 
the measurement of the cortical tension. For instance, in Ref. 
[133], the authors observed the retraction of cell junctions 
in Xenopus gastrula mesoderm explants after laser dissection 
and computed the relative cortical tension.

Although laser dissection is a simple and easy method, its 
invasiveness restricts its application to observing specimen fol-
lowing dissection. On the other hand, non-invasive precise 
manipulation of force is essential to dissect the mechanical 
signal, particularly to demonstrate the adequacy of force as 
a sufficient condition, such as the activation of the signal by 
artificial force. In the following, we introduce techniques for 
manipulating mechanical signals.

Magnetic tweezers
Magnetic tweezers (Table 2, Fig. 3a) and techniques that 
employ an external magnetic field to manipulate magnetic 
particles [134,135] have been recognized as among the most 
effective tools for applying force to tissues. This technique 
applies forces ranging from approximately pico-Newtons to 
nano-Newtons to magnetic beads of a few micrometers in 
size. A solenoid wrapped around a rod is typically used as a 

Table 2. Comparison of manipulation techniques

Magnetic 
tweezers

Optical 
tweezers AFM

Force range 
(pN)

0.01–104 0.1–100 10–104

Applications Applicable to 
deep tissue

Force clamp
Bead rotation

3D manipula-
tion

Combinable 
with other 
microscopes 
(such as 
confocal 
microscopy)

High-resolution 
imaging

Stiffness 
measurement

Limitations Difficulty 
of fine 
manipulation

Photodam-
age (Due 
to use of 
high-power 
laser)

Limitation of 
specimen

Relatively slow

Effective 
working 
distance

∼ Centimeter <∼100 μm <∼Angstrom

Applicational 
targets (in 
morpho-
logical 
studies)

Heart [139] Cilia [14,153]
Cell junction 

[151,152]

Blastocyst 
[158]

probe for magnetic tweezers (Fig. 3a) [134,136]. There are 
also sophisticated magnetic tweezers that can apply torque 
[135,137] or generate strong local magnetic waves using 
Helmholtz coils and permalloys [138].

Given their relatively stronger force compared to the other 
techniques introduced below (Table 2), magnetic tweezers are 
suitable for multicellular systems. Fukui et al. demonstrated 
that ectopic shear stress induces Ca2+ activation by apply-
ing mechanical force to the zebrafish heart with magnetic 
tweezers. Further experiments revealed that Ca2+—NFAT 
(nuclear factor of activated T cells) signaling is activated in 
response to mechanical stimuli, which permissively controls 
valve morphogenesis in the heart [139].

Another interesting approach that uses magnetic fields is 
the use of magnetically responsive oil microdroplets [140]. 
When injected into living tissues, the droplets deform in 
response to an external magnetic field. The authors of Ref. 
[140] measured the yield stress at various points along the 
body axis, which represents mechanical integrity. By ana-
lyzing the shape change of the droplets, they found that a 
jamming transition from fluid to solid underlies the elonga-
tion of the body axis in vertebrates. Furthermore, the analysis 
of rheological responses revealed that presomitic mesoderm 
cells mechanically probe their microenvironments in zebrafish 
[141].

Although magnetic tweezers serve as an initial approach 
for tissue manipulation, it has a disadvantage in precisely 
controlling the displacement of the probe. By employing a 
positional feedback system to regulate the applied force, mag-
netic tweezers enable the positional manipulation of particles 
[142]. However, for precise positional manipulation, other 
tools, such as optical tweezers or atomic force microscopy 
(AFM), are more suitable. Those tools are detailed in the 
following.
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Fig. 3. Comparison of the manipulation techniques (a) Schematic of a probe of magnetic tweezers. Typically, a solenoid (red line) wraps around a rod 
(black). The distance between the solenoid and the sample is commonly controlled by a manipulator (data not shown). A 1–10 μm-diameter magnetic 
particle is usually used for the probe (brown). (b) Schematic of optical tweezers. A laser beam is focused by an objective lens (illustrated as an ellipsoid), 
trapping a particle (green) with a high refractive index in the medium. The 0.05–5 μm diameter polystyrene particle is usually used for the probe (green). 
(c) Schematic of an AFM probe, using a fine probe that typically moves along the z -direction. AFM can manipulate the specific point in the sample. 
Generally, the specimen is fixed on the flat stage, such as the mica surface (data not shown), and the probe scans the surface.

Optical tweezers
For accurate positional manipulation of probes at the 
nanometer level, optical tweezers are a good choice (Table 2, 
Fig. 3b). Optical tweezers trap a small particle using a focused 
laser beam [143]. When a particle with a high refractive index, 
such as a polystyrene bead, is placed in the path of the focused 
laser beam, the particle is trapped because of the force that 
originates from the slight refraction of the light (Fig. 3b). Since 
the technique requires the refractive index difference between 
the medium and the beads and laser focusing without optical 
aberrations, it is only applicable to the surface of the tissue, 
basically.

Typically, optical tweezers are constructed by introducing 
an infrared continuous wave laser beam into the microscope 
through the episcopic illuminator port and focusing the beam 
on the sample plane through a high-numerical-aperture objec-
tive lens [144]. This means that microscopes with an epis-
copic illuminator port can be equipped with optical tweezers, 
allowing seamless integration with other techniques.

Using high-accuracy actuators such as piezoelectric actua-
tors, optical tweezers can manipulate a trapped particle with 
nanometer accuracy. Near the center of the beam, the force 
applied to the trapped particle increases linearly with the 
displacement from the beam center. This enables the determi-
nation of the force applied to the particle by the displacement. 
Indeed, high-precision measurement of the displacement of 
trapped particles can be achieved through the integration of a 
3D single-particle tracking method [144,145] which enables 
the force measurement in 3D space with pico-Newtons accu-
racy [146].

Optical tweezers are suitable for single-molecule experi-
ments owing to their high-positional accuracy, and thus, they 
are commonly combined with single-molecule imaging tech-
niques [147,148]. This technique can also be used to measure 
the stall forces of bacteria [149] and organelles [14,146]. 
Furthermore, using a spatial light modulator, which gener-
ates multiple focused beams through the interference of a 
laser beam, optical tweezers can simultaneously trap multiple 
particles [150].

If the refractive index of the target is sufficiently larger 
than that of the medium, optical tweezers can be used to 
manipulate the target without beads. For example, cell junc-
tions of the epithelial tissue in Drosophila embryos [151,152] 
or single cilium located in the left–right (L–R) organizer of 

zebrafish can be directly trapped by optical tweezers [153]. 
Nishizawa et al. succeeded in artificially inducing the remod-
eling of cell–cell junctions using two-point beadless optical 
tweezers and revealed how mechanical stresses lead to the 
efficient deformation of cell–cell contacts [151].

Atomic force microscopy
Despite the limitation of specimens, AFM is useful for 
force manipulation and measurement combined with high-
resolution imaging of surface topography (Table 2, Fig. 3c). 
AFM scans the height of the sample surface by detecting 
the force between the sharp-tip probe (typically with a tip 
radius of ∼10 nm) and the sample; therefore, the specimen 
should attach on the flat surface such as mica. AFM can 
also measure and apply forces in the range of pico-Newtons 
to nano-Newtons [154]. Various types of AFM have been 
reported [155], and particularly, recent development in high-
speed AFM enables real-time measurement of live biological 
samples in a liquid environment with nanometer accuracy 
(typically with a spatial resolution of 2–3 nm and a time res-
olution of ∼100 ms) [156,157], as well as the simultaneous 
application of mechanical force to the desired point.

AFM can be utilized to characterize a multicellular sys-
tem by, for example, measuring the blastocyst stiffness [158]. 
However, because of the requirement for samples to be tightly 
attached to mica or glass surfaces, AFM has been used less 
frequently in morphological studies. Nevertheless, combining 
AFM with optical microscopy is a promising approach for 
extending its applicability [154,159].

Integration of imaging, analysis and 
mechanical manipulation toward 
understanding of morphogenesis processes
Integrations of the imaging techniques, image analysis tools 
and mechanical manipulation tools described so far are begin-
ning to reveal the cellular and molecular mechanisms of 
various dynamic biological events, such as morphogenesis. 
Here, we overview how improvements in imaging speed and 
volume, advancement in analysis methods and cutting-edge 
force manipulation methods have enabled us to understand 
the orchestration of mechanical and molecular processes in 
development.
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Imaging-based studies revealed cellular and 
molecular mechanisms of collective deformation in 
embryogenesis
There are major morphogenesis processes that occur in rela-
tively short timescales, and improvement in imaging speed has 
contributed to studies of those processes. Notable examples 
can be seen in the research of tissue invagination, such as 
gastrulation and neural tube formation [160,161]. Typically, 
tissue invagination is driven by apical constriction, a process 
characterized by the contraction of apical cell surfaces [162]. 
High-speed imaging using spinning-disk microscopy is essen-
tial to capture specific cellular and molecular dynamics in 
real-time, considering that cells change shape in a few minutes 
during apical constriction and that molecules driving apical 
constriction, such as actomyosin, can change their localization 
in tens of seconds (see Table1). For example, in Drosophila
gastrulation, epithelial cell sheet folds as cells undergo pulsed 
apical contraction [163]. This correlates with the pulsate cel-
lular motion that shows switching between contractile and 
stable phases every few minutes in a ratchet-like fashion. The 
ratchet-like apical constriction is driven by pulsed myosin 
coalescence, which changes the actomyosin structure within 
seconds [163]. Utilizing spinning-disk microscopy enabled 
high-speed imaging of the apical myosin dynamics. Recently, 
in mouse gastrulation, researchers have also shown that 
ratchet-like apical constriction drives tissue invagination dur-
ing epithelial-to-mesenchymal transition (EMT), combining 
imaging by spinning-disk microscopy and automatic segmen-
tation with Tissue Analyzer [52,164]. During EMT, cellular 
mechanisms other than apical constriction have also been 
reported to induce tissue folding. In Drosophila, integration 
of spinning-disk microscopy for rapid imaging of mesoder-
mal invagination and automated segmentation revealed that 
ectopically induced EMT leads to cell delamination that exerts 
an apicobasal force on the epithelial sheet to fold tissue [165].

Convergent extension, such as body axis elongation, is 
another morphogenetic process that requires imaging speed 
due to its rapid progression. In convergent extension, cell 
intercalation, in which cells dynamically change their rela-
tive positions, is considered one of the driving forces [166]. 
In Drosophila, time-lapse observation revealed that the inter-
cellular boundary perpendicular to the extension axis actively 
contracted and disappeared [167]. Subsequently, a boundary 
is newly formed along the extension axis, which rearranges 
the relative position of the four involved cells [167]. There is 
another type of cell intercalation involving five or more cells 
(up to about 10 cells) called ‘rosette’ formation [168]. During 
this process, cells all together shrink the cell membrane paral-
lel to the axis of contraction, which converge the membrane 
vertices to a common point. Subsequently, new cell boundaries 
perpendicular to the axis of contraction are formed simultane-
ously in each cell, promoting tissue extension. Given the rapid 
cellular dynamics, spinning-disk microscopy was employed in 
these studies to acquire images at rapid intervals of several 
tens of seconds.

Deep tissue imaging using two-photon microscopy is also 
invaluable for studying morphogenetic mechanisms. Its effec-
tiveness is illustrated by studies that underscore the role of 
basolateral protrusion besides apical deformation, which for-
merly received the main focus. As apical dynamics of cells 
are easily visualized, it is not surprising that apical deforma-
tion was considered an active driving force for morphogenesis 

until the 2000s. However, recently, two-photon imaging has 
been extending our understanding of the role of basolat-
eral cellular dynamics. For example, during the germband 
extension in the Drosophila embryo, epithelial cells form 
a basolateral protrusion that involves cell intercalation and 
convergent extension [31]. In this study, using the combi-
nation of two- and multi-photon microscopy and automated 
segmentation with Packing Analyzer [52], Sun et al. revealed 
that basolateral protrusion occurs independently of apical 
constriction and that the coordination of these two processes 
promotes efficient rosette formation resulting in germband 
extension [31]. In Drosophila wing imaginal discs, tissue 
folding is driven by the basal expansion of epithelial cells 
through local degradation of the extracellular matrix and by 
apicobasal shortening through increased tension in the lateral 
membrane [169]. In this paper, a multiphoton microscope was 
used to image wing imaginal discs with a thickness of ∼50 μm 
for longer than 1 h with excellent signal-to-noise ratio.

New discoveries can also be made by combining differ-
ent microscopy techniques. For example, John and Rauzi 
used spinning-disk microscopy and light-sheet microscopy 
to reveal that the coupling of apical constriction and cell 
intercalation causes simultaneous coordinated tissue folding 
and extension [170]. This combination was essential to ana-
lyze the correlation between entire tissue deformation and 
gene expression pattern obtained by a wide-field observa-
tion and the rapid changes of the membrane in each cell 
obtained by a fast timescale. Note that automatic segmenta-
tion using ASTEC [83] enabled the analysis of big imaging 
data obtained by multiple microscopy methods in this study 
[170]. In another example, by combining imaging by two-
photon microscopy and light-sheet microscopy, membrane 
segmentation, and nuclear tracking of neuroepithelial cells, 
it was shown that mechano-chemical feedback of the Sonic 
hedgehog (SHH) signal is required for tissue protrusion in the 
forebrain of the chick embryo [171]. This combination of the 
microscopy techniques enabled quantification of multicellular 
dynamics in large, thick tissues such as ∼60 μm thick brains 
of embryos in culture. Also, by combining two-photon and 
spinning-disk microscopy with quantitative measurements of 
cellular properties using machine-learning-based segmenta-
tion by StarDist [60], Vignes et al. have recently shown that 
cell volume reduction induces tissue convergence during car-
diovascular morphogenesis in zebrafish [172]. Spinning-disk 
microscopy was essential for the imaging analysis of the heart 
that beats over 100 bpm. This work also demonstrates how a 
robust, deep-learning-based detection system can compensate 
for the low signal-to-noise ratio in two-photon microscopy. 
These significant findings were achieved by synergistically 
combining state-of-the-art microscopy techniques and image-
analysis toolkits.

Recent cutting-edge study of mechanical signal: 
mechanical force and left–right determination
In this final section, we introduce one of the studies that com-
bined imaging, analysis and manipulation techniques as an 
application of these techniques to illustrate how this combi-
nation is essential for revealing the role of mechanical force in 
morphological study. In this context, we present a study on the 
L–R axis determination during mouse embryo development 
[14]. The mechanism underlying the determination of L–R 
asymmetry has been a subject of controversy, specifically, it 
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Fig. 4. Mechanical signals involved in the L–R determination (a) Steps in the establishment of L–R asymmetry (left panel). The step of symmetry 
breaking includes three smaller steps (right gray box). (b) Measurement of the 3D deformation of the nodal immotile cilia through optical regulation of 
the nodal flow. The left and right panels show 3D reconstructed images of the left-side (L-side) and the right-side (R-side) cilium. Red and green colors 
represent the same cilium with and without nodal flow, respectively. The middle panel shows the schematic of the cross-section of the node. The L- and 
R-side cilia show ventral and dorsal bending by the nodal flow (illustrated in an orange arrow), respectively. (c) Manipulation of nodal immotile cilia by 
optical tweezers and measurement of the Dand5 mRNA degradation. A polystyrene bead (white dotted circle) was trapped and oscillated along the 
z -axis by optical tweezers and contacted a cilium (left panel). Dand5 mRNA degradation, the earliest marker for the L-side determination, was activated 
through mechanical stimuli of optical tweezers (right panel). To evaluate the response of the mechanical stimuli while excluding any influence from 
chemical cues, the authors used the iv/iv  mutant, which lacks the nodal flow and flow-derived chemical cues. Even without chemical cues, mechanical 
signals activated mRNA degradation, which meant mechanical stimuli were sufficient to initiate the L–R determination. The authors measured the 
mRNA level by whole-cell fluorescence recovery after photobleaching [14]. The intensity was linearly correlated to the Dand5 mRNA level. (d) Model of 
the initial L–R determination by the nodal immotile cilia. The cross-section of the node is shown. By the nodal flow (orange arrow), the L- and R-side cilia 
illustrated by the pink rods are bent to the ventral (V-bend) and dorsal (D-bend) sides, respectively. The Pkd2 channels are cation channels and one of the 
candidates of the mechanosensor on the cilia are localized on the dorsal side of both side cilium. On the L-side cilia, the membrane tension of the dorsal 
side is increased, which activates the dorsally localized Pkd2 channel. The Dand5 mRNA degradation occurs only on the L-side and determines the L–R 
axis. (a–d) Modified from Ref. [14].

was not clear whether mechanical or chemical signals initiate 
the determination process. This study, using optical micro-
scopic techniques such as optical tweezers, clearly demon-
strates that a mechanical signal sufficiently initiates the L–R 
symmetry breaking.

Why is the heart located on the left side of the body? 
During embryogenesis, a symmetric fertilized egg becomes an 
asymmetric body characterized by dorsoventral, anteroposte-
rior, and L–R axes. Mechanical signals play an essential role 
in breaking L–R symmetry [14,153]. During mouse devel-
opment, the L–R symmetry is first broken at the ventral 
node (the L–R organizer in this species) on embryonic day 
7.5. The node has a leftward extracellular fluid flow known 
as the nodal flow [173,174]. Notably, the direction of this 
nodal flow determines L–R asymmetry through the primary 
cilia located at the peripheral region of the node, known as 
nodal immotile cilia [175–177] (Fig. 4a and b). Recent stud-
ies have revealed that nodal immotile cilia respond to nodal 
flow through the cation channel Pkd2 and activate the left-side 
specific signal, for example, the degradation of Dand5 mRNA
[176,178].

Most recently, state-of-the-art microscopic techniques have 
revealed that nodal immotile cilia sense the bending direc-
tion to sense the direction of nodal flow as mechanosensors 
[14]. In the study, Katoh et al. first found the passive mechan-
ical motion of nodal immotile cilia by regulating the nodal 
flow by ultra-violet (UV) light. Nodal flow is generated by 

axonemal dynein [174,179], and UV irradiation induces the 
cleavage of the dynein heavy chain [180]. The authors con-
structed a microscope that was equipped with a spinning-disk 
confocal microscope and a UV-irradiation optical pathway, 
and stopped the nodal flow by irradiating strong UV light to 
the center region of the node. By obtaining 3D high-resolution 
images and comparing the angle change of nodal immotile 
cilia with and without nodal flow, it was found that nodal 
immotile cilia were passively bent by the nodal flow [14] 
(Fig. 4b).

Using these images, the authors then conducted a rigorous 
calculation to determine the strain in the ciliary membrane 
induced by nodal flow. The ciliary membrane of the images 
was modeled into approximately 2000 triangular mesh ele-
ments. The deformation of each element was measured by 
comparing the images with and without flow. Subsequently, 
the membrane tension of the cilium was calculated [181]. 
Their analysis revealed the membrane tension on the dorsal 
side of the left cilia is significantly increased by the nodal
flow [14].

At the time of the study, it had been controversial how 
nodal immotile cilia activate. To directly test whether nodal 
immotile cilia can sense mechanical force, the authors directly 
applied mechanical force to a single nodal immotile cil-
ium using optical tweezers. Cilia showed calcium transients 
in response to mechanical bending. Furthermore, 1.5 h of 
mechanical stimulation (left panel in Fig. 4c) activated Dand5
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mRNA degradation in the stimulated cells (right panel in 
Fig. 4c) and increased Nodal activity in the stimulated side 
of the node. These results suggest that mechanical stimuli to 
nodal immotile cilia are sufficient to initiate L–R symmetry 
breaking [14].

Experiments using optical tweezers demonstrated that the 
nodal immotile cilia act as mechanosensors. However, one 
important question still remained: Why are only the left side 
cilia activated by the leftward nodal flow? The authors pro-
vided insights into answering this question by demonstrating 
that nodal immotile cilia could only sense the ventral bend and 
did not respond to the dorsal bend. Super-resolution imag-
ing with stimulated emission depletion (STED) microscopy 
revealed that the distribution of the cation channel, Pkd2, 
involved in L–R determination, was significantly biased 
toward the dorsal side of the nodal immotile cilia. Considering 
the finding that dorsal-side membrane tension was increased 
by nodal flow in the left-side cilia, it is likely that the dorsal 
membrane tension by flow will activate the dorsally localized 
Pkd2 channels only on the left side, but not in the dorsally bent 
right-side cilia. Indeed, the authors found that the cilia recog-
nized the bending direction by 3D manipulation with optical 
tweezers. These results indicate that because the cilia can only 
sense the ventral bend, the nodal flow activates cells located 
only on the left side of the node, which leads to subsequent sig-
naling cascades specific to the left side, such as Nodal signaling 
(Fig. 4d) [14].

Conclusion and perspectives
In this review, we discussed recent advances in microscopy and 
image analysis techniques that can be applied to morphogene-
sis research. We also provided an overview of mechanobiolog-
ical characterization and manipulation tools. Highlighting the 
findings of multicellular morphogenesis and mechano-signal 
transduction, our review illustrates how novel methodologies 
can advance our understanding in the fields of development 
and mechanobiology.

While we mainly focused on microscopy methods for 
live imaging, it is notable that recent technical develop-
ments have also enabled us to obtain highly multiplexed 
data from fixed samples. For example, spatial transcriptome 
technology has been used to investigate comprehensive gene 
expression patterns with positional information [182,183]. 
Additionally, highly multiplexed immunostaining can now be 
achieved through multi-round acquisition [184]. Analyzing 
those high-dimensional snapshot data and integrating them 
with timelapse images will likely provide unique opportunities 
for understanding regulatory mechanisms in developmental
processes.

In this review, our focus has been primarily on supervised 
machine-learning methods. The annotation and validation 
processes can be a bottleneck of the training those super-
vised models, especially with an ever-increasing amount of 
image data. This situation highlights the importance of self-
supervised and weakly supervised learning methods, which 
can utilize abundant non-labeled images, as emphasized in a 
recent review [185].

Despite the advancement of analysis algorithms and soft-
ware tools, there is still room for user interface develop-
ment and organizing documentation to ensure accessibility 

for non-specialists. This will necessitate further collabora-
tion between biologists and computational experts, which 
may require reconsideration of data deposition methods 
and reward structures for scientists [186]. The applica-
tion of large language models is a promising direction 
that may enable seamless communication between biologists, 
specialized analysis tools and even microscopes using natural
languages [187].

While recent developments in imaging techniques have 
made it possible to describe detailed cellular dynamics at 
the organ scale, mechanobiology at the cellular and multi-
cellular scale remains a budding research area that requires 
improvements in force measurement and manipulation tech-
niques. As image acquisition capabilities increase, concurrent 
advances in force measurement and manipulation techniques 
are also needed. Although deep tissue imaging capabilities 
have expanded, 3D force estimation of cells is still challenging, 
which is necessary to unveil the mechanical signal underly-
ing multi-cellular systems. Furthermore, although wide-field 
imaging through light-sheet microscopy is now possible, force 
manipulation is still limited to a range of a few hundred 
micrometers at most. Advances in microscopy and image anal-
ysis techniques can synergize with the development of force 
quantification and manipulation tools, which will uncover the 
mechanical aspects of morphogenesis.
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